Size matters: altering the metal-surface coordination in micropores via structural confinement effects

Solid-state NMR experiments were used to investigate the dynamics of supported complexes grafted to a series of silica gel materials of varied pore sizes. Through dipolar recoupling measurements, we found that ligand dynamics were impeded in the more confined environments, as would be expected. A ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry frontiers 2024-10, Vol.11 (20), p.6862-6873
Hauptverfasser: Southern, Scott A., Thompson, Austin, Sadow, Aaron D., Perras, Frédéric A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6873
container_issue 20
container_start_page 6862
container_title Inorganic chemistry frontiers
container_volume 11
creator Southern, Scott A.
Thompson, Austin
Sadow, Aaron D.
Perras, Frédéric A.
description Solid-state NMR experiments were used to investigate the dynamics of supported complexes grafted to a series of silica gel materials of varied pore sizes. Through dipolar recoupling measurements, we found that ligand dynamics were impeded in the more confined environments, as would be expected. A new form of motion involving the complex as a whole, however, appeared in the most restricted environment consisting of 22 Å diameter pores. These motions persisted down to −100 °C at which point the ligands were frozen on the NMR timescale. The newly observed dynamics could only result from the breaking of secondary dative metal–siloxane interactions that otherwise lock the complex in a preferred orientation on the surface. Crucially, these results show that confinement effects alone can be sufficient to reduce a grafted metal's effective coordination number in direct analogy to the synthesis of undercoordinated complexes using bulky ligands. This finding could have important implications in the synthesis of more active heterogeneous catalysts.
doi_str_mv 10.1039/D4QI01261E
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2448521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114015616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-4650d702d6614f63b1f02ddc1171e589e2ba24a3092309c141f6bef19ca7d0c93</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWLQXf0HQm7CaySbZrjepVQsFEfUc0mxiU7ZJTbKC_nqjFfQwvJnhY3jzEDoBcgGkbi9v2OOcABUw20MjSjitgPN6_19_iMYprQkhAIyAICNkn9ynwRuVs4npCqu-qPOvOK_K1mTVV2mIVmmDdQixc15lFzx2Hm-cjmEbokn43Smcchx0HqLqC-mt82ZjfMbGWqNzOkYHVvXJjH_1CL3czp6n99Xi4W4-vV5UGhqeKyY46RpCOyGAWVEvwZah0wANGD5pDV0qylRNWlpKAwMrlsZCq1XTEd3WR-h0dzek7GTSLhu9Kn58MSEpYxNOoUBnO2gbw9tgUpbrMERffMn6JxguQBTqfEeVN1OKxsptdBsVPyQQ-Z23_Mu7_gLfrnJj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114015616</pqid></control><display><type>article</type><title>Size matters: altering the metal-surface coordination in micropores via structural confinement effects</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Southern, Scott A. ; Thompson, Austin ; Sadow, Aaron D. ; Perras, Frédéric A.</creator><creatorcontrib>Southern, Scott A. ; Thompson, Austin ; Sadow, Aaron D. ; Perras, Frédéric A. ; Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><description>Solid-state NMR experiments were used to investigate the dynamics of supported complexes grafted to a series of silica gel materials of varied pore sizes. Through dipolar recoupling measurements, we found that ligand dynamics were impeded in the more confined environments, as would be expected. A new form of motion involving the complex as a whole, however, appeared in the most restricted environment consisting of 22 Å diameter pores. These motions persisted down to −100 °C at which point the ligands were frozen on the NMR timescale. The newly observed dynamics could only result from the breaking of secondary dative metal–siloxane interactions that otherwise lock the complex in a preferred orientation on the surface. Crucially, these results show that confinement effects alone can be sufficient to reduce a grafted metal's effective coordination number in direct analogy to the synthesis of undercoordinated complexes using bulky ligands. This finding could have important implications in the synthesis of more active heterogeneous catalysts.</description><identifier>ISSN: 2052-1553</identifier><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/D4QI01261E</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Chemical synthesis ; Confined spaces ; Confinement ; Coordination numbers ; Dynamic structural analysis ; Ligands ; NMR ; Nuclear magnetic resonance ; Preferred orientation ; Silica gel ; Siloxanes</subject><ispartof>Inorganic chemistry frontiers, 2024-10, Vol.11 (20), p.6862-6873</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-4650d702d6614f63b1f02ddc1171e589e2ba24a3092309c141f6bef19ca7d0c93</cites><orcidid>0000-0002-7331-6554 ; 0000-0002-2662-5119 ; 0000-0002-9517-1704 ; 0000-0001-6424-1493 ; 0000000295171704 ; 0000000226625119 ; 0000000164241493 ; 0000000273316554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2448521$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Southern, Scott A.</creatorcontrib><creatorcontrib>Thompson, Austin</creatorcontrib><creatorcontrib>Sadow, Aaron D.</creatorcontrib><creatorcontrib>Perras, Frédéric A.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><title>Size matters: altering the metal-surface coordination in micropores via structural confinement effects</title><title>Inorganic chemistry frontiers</title><description>Solid-state NMR experiments were used to investigate the dynamics of supported complexes grafted to a series of silica gel materials of varied pore sizes. Through dipolar recoupling measurements, we found that ligand dynamics were impeded in the more confined environments, as would be expected. A new form of motion involving the complex as a whole, however, appeared in the most restricted environment consisting of 22 Å diameter pores. These motions persisted down to −100 °C at which point the ligands were frozen on the NMR timescale. The newly observed dynamics could only result from the breaking of secondary dative metal–siloxane interactions that otherwise lock the complex in a preferred orientation on the surface. Crucially, these results show that confinement effects alone can be sufficient to reduce a grafted metal's effective coordination number in direct analogy to the synthesis of undercoordinated complexes using bulky ligands. This finding could have important implications in the synthesis of more active heterogeneous catalysts.</description><subject>Chemical synthesis</subject><subject>Confined spaces</subject><subject>Confinement</subject><subject>Coordination numbers</subject><subject>Dynamic structural analysis</subject><subject>Ligands</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Preferred orientation</subject><subject>Silica gel</subject><subject>Siloxanes</subject><issn>2052-1553</issn><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYMoWLQXf0HQm7CaySbZrjepVQsFEfUc0mxiU7ZJTbKC_nqjFfQwvJnhY3jzEDoBcgGkbi9v2OOcABUw20MjSjitgPN6_19_iMYprQkhAIyAICNkn9ynwRuVs4npCqu-qPOvOK_K1mTVV2mIVmmDdQixc15lFzx2Hm-cjmEbokn43Smcchx0HqLqC-mt82ZjfMbGWqNzOkYHVvXJjH_1CL3czp6n99Xi4W4-vV5UGhqeKyY46RpCOyGAWVEvwZah0wANGD5pDV0qylRNWlpKAwMrlsZCq1XTEd3WR-h0dzek7GTSLhu9Kn58MSEpYxNOoUBnO2gbw9tgUpbrMERffMn6JxguQBTqfEeVN1OKxsptdBsVPyQQ-Z23_Mu7_gLfrnJj</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Southern, Scott A.</creator><creator>Thompson, Austin</creator><creator>Sadow, Aaron D.</creator><creator>Perras, Frédéric A.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7331-6554</orcidid><orcidid>https://orcid.org/0000-0002-2662-5119</orcidid><orcidid>https://orcid.org/0000-0002-9517-1704</orcidid><orcidid>https://orcid.org/0000-0001-6424-1493</orcidid><orcidid>https://orcid.org/0000000295171704</orcidid><orcidid>https://orcid.org/0000000226625119</orcidid><orcidid>https://orcid.org/0000000164241493</orcidid><orcidid>https://orcid.org/0000000273316554</orcidid></search><sort><creationdate>20241008</creationdate><title>Size matters: altering the metal-surface coordination in micropores via structural confinement effects</title><author>Southern, Scott A. ; Thompson, Austin ; Sadow, Aaron D. ; Perras, Frédéric A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-4650d702d6614f63b1f02ddc1171e589e2ba24a3092309c141f6bef19ca7d0c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical synthesis</topic><topic>Confined spaces</topic><topic>Confinement</topic><topic>Coordination numbers</topic><topic>Dynamic structural analysis</topic><topic>Ligands</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Preferred orientation</topic><topic>Silica gel</topic><topic>Siloxanes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Southern, Scott A.</creatorcontrib><creatorcontrib>Thompson, Austin</creatorcontrib><creatorcontrib>Sadow, Aaron D.</creatorcontrib><creatorcontrib>Perras, Frédéric A.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Southern, Scott A.</au><au>Thompson, Austin</au><au>Sadow, Aaron D.</au><au>Perras, Frédéric A.</au><aucorp>Ames Laboratory (AMES), Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size matters: altering the metal-surface coordination in micropores via structural confinement effects</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2024-10-08</date><risdate>2024</risdate><volume>11</volume><issue>20</issue><spage>6862</spage><epage>6873</epage><pages>6862-6873</pages><issn>2052-1553</issn><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Solid-state NMR experiments were used to investigate the dynamics of supported complexes grafted to a series of silica gel materials of varied pore sizes. Through dipolar recoupling measurements, we found that ligand dynamics were impeded in the more confined environments, as would be expected. A new form of motion involving the complex as a whole, however, appeared in the most restricted environment consisting of 22 Å diameter pores. These motions persisted down to −100 °C at which point the ligands were frozen on the NMR timescale. The newly observed dynamics could only result from the breaking of secondary dative metal–siloxane interactions that otherwise lock the complex in a preferred orientation on the surface. Crucially, these results show that confinement effects alone can be sufficient to reduce a grafted metal's effective coordination number in direct analogy to the synthesis of undercoordinated complexes using bulky ligands. This finding could have important implications in the synthesis of more active heterogeneous catalysts.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D4QI01261E</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7331-6554</orcidid><orcidid>https://orcid.org/0000-0002-2662-5119</orcidid><orcidid>https://orcid.org/0000-0002-9517-1704</orcidid><orcidid>https://orcid.org/0000-0001-6424-1493</orcidid><orcidid>https://orcid.org/0000000295171704</orcidid><orcidid>https://orcid.org/0000000226625119</orcidid><orcidid>https://orcid.org/0000000164241493</orcidid><orcidid>https://orcid.org/0000000273316554</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-1553
ispartof Inorganic chemistry frontiers, 2024-10, Vol.11 (20), p.6862-6873
issn 2052-1553
2052-1545
2052-1553
language eng
recordid cdi_osti_scitechconnect_2448521
source Royal Society Of Chemistry Journals 2008-
subjects Chemical synthesis
Confined spaces
Confinement
Coordination numbers
Dynamic structural analysis
Ligands
NMR
Nuclear magnetic resonance
Preferred orientation
Silica gel
Siloxanes
title Size matters: altering the metal-surface coordination in micropores via structural confinement effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20matters:%20altering%20the%20metal-surface%20coordination%20in%20micropores%20via%20structural%20confinement%20effects&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Southern,%20Scott%20A.&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA%20(United%20States)&rft.date=2024-10-08&rft.volume=11&rft.issue=20&rft.spage=6862&rft.epage=6873&rft.pages=6862-6873&rft.issn=2052-1553&rft.eissn=2052-1553&rft_id=info:doi/10.1039/D4QI01261E&rft_dat=%3Cproquest_osti_%3E3114015616%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114015616&rft_id=info:pmid/&rfr_iscdi=true