Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison

This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2024-07, Vol.105 (7), p.E1170-E1203
Hauptverfasser: Bushuk, Mitchell, Ali, Sahara, Bailey, David A., Bao, Qing, Batté, Lauriane, Bhatt, Uma S., Blanchard-Wrigglesworth, Edward, Blockley, Ed, Cawley, Gavin, Chi, Junhwa, Counillon, François, Coulombe, Philippe Goulet, Cullather, Richard I., Diebold, Francis X., Dirkson, Arlan, Exarchou, Eleftheria, Göbel, Maximilian, Gregory, William, Guemas, Virginie, Hamilton, Lawrence, He, Bian, Horvath, Sean, Ionita, Monica, Kay, Jennifer E., Kim, Eliot, Kimura, Noriaki, Kondrashov, Dmitri, Labe, Zachary M., Lee, WooSung, Lee, Younjoo J., Li, Cuihua, Li, Xuewei, Lin, Yongcheng, Liu, Yanyun, Maslowski, Wieslaw, Massonnet, François, Meier, Walter N., Merryfield, William J., Myint, Hannah, Navarro, Juan C. Acosta, Petty, Alek, Qiao, Fangli, Schröder, David, Schweiger, Axel, Shu, Qi, Sigmond, Michael, Steele, Michael, Stroeve, Julienne, Sun, Nico, Tietsche, Steffen, Tsamados, Michel, Wang, Keguang, Wang, Jianwu, Wang, Wanqiu, Wang, Yiguo, Wang, Yun, Williams, James, Yang, Qinghua, Yuan, Xiaojun, Zhang, Jinlun, Zhang, Yongfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E1203
container_issue 7
container_start_page E1170
container_title Bulletin of the American Meteorological Society
container_volume 105
creator Bushuk, Mitchell
Ali, Sahara
Bailey, David A.
Bao, Qing
Batté, Lauriane
Bhatt, Uma S.
Blanchard-Wrigglesworth, Edward
Blockley, Ed
Cawley, Gavin
Chi, Junhwa
Counillon, François
Coulombe, Philippe Goulet
Cullather, Richard I.
Diebold, Francis X.
Dirkson, Arlan
Exarchou, Eleftheria
Göbel, Maximilian
Gregory, William
Guemas, Virginie
Hamilton, Lawrence
He, Bian
Horvath, Sean
Ionita, Monica
Kay, Jennifer E.
Kim, Eliot
Kimura, Noriaki
Kondrashov, Dmitri
Labe, Zachary M.
Lee, WooSung
Lee, Younjoo J.
Li, Cuihua
Li, Xuewei
Lin, Yongcheng
Liu, Yanyun
Maslowski, Wieslaw
Massonnet, François
Meier, Walter N.
Merryfield, William J.
Myint, Hannah
Navarro, Juan C. Acosta
Petty, Alek
Qiao, Fangli
Schröder, David
Schweiger, Axel
Shu, Qi
Sigmond, Michael
Steele, Michael
Stroeve, Julienne
Sun, Nico
Tietsche, Steffen
Tsamados, Michel
Wang, Keguang
Wang, Jianwu
Wang, Wanqiu
Wang, Yiguo
Wang, Yun
Williams, James
Yang, Qinghua
Yuan, Xiaojun
Zhang, Jinlun
Zhang, Yongfei
description This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001-20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.
doi_str_mv 10.1175/BAMS-D-23-0163.1
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2448405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A805382146</galeid><sourcerecordid>A805382146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2831-a458cd8000bfff87e2f40d21658e170f1371a25cda882f6e8f4adf627c46d4f43</originalsourceid><addsrcrecordid>eNptks1PwyAYh4nRxPlx99joyUMnX22Jtzq_Fmc0Ts8E6ctE27IAGv3vpZkxWbJwAB6e9w2QH0JHBI8JqYqzi_p-nl_mlOWYlGxMttCIFBTnmFfVNhphjNMJxtUu2gvhfdgyQUbo7tFDY3W0_SKbwzJC9wo-q30iOgGVTTWcZ3V2_9lG27kG2oEG16u0-LBtm01ct1TeJnSAdoxqAxz-zfvo5frqeXKbzx5uppN6lmsqGMkVL4RuRLrCqzFGVEANxw0lZSGAVNgQVhFFC90oIagpQRiuGlPSSvOy4YazfXS86utCtDJoG0G_adf3oKOknAuOiySdrqQ31cqlt53yP9IpK2_rmRxY-hhWMCG-SHJPVu5CtSBtb1z0Snc2aFmL1EtQwstk5RusBfTgVet6MDbhNX-8wU-jgc7qjQWnawXJifAdF-ozBDmdP627eOVq70LwYP7fSLAcAiGHQMhLSZkcAiEJ-wXSjKPG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bushuk, Mitchell ; Ali, Sahara ; Bailey, David A. ; Bao, Qing ; Batté, Lauriane ; Bhatt, Uma S. ; Blanchard-Wrigglesworth, Edward ; Blockley, Ed ; Cawley, Gavin ; Chi, Junhwa ; Counillon, François ; Coulombe, Philippe Goulet ; Cullather, Richard I. ; Diebold, Francis X. ; Dirkson, Arlan ; Exarchou, Eleftheria ; Göbel, Maximilian ; Gregory, William ; Guemas, Virginie ; Hamilton, Lawrence ; He, Bian ; Horvath, Sean ; Ionita, Monica ; Kay, Jennifer E. ; Kim, Eliot ; Kimura, Noriaki ; Kondrashov, Dmitri ; Labe, Zachary M. ; Lee, WooSung ; Lee, Younjoo J. ; Li, Cuihua ; Li, Xuewei ; Lin, Yongcheng ; Liu, Yanyun ; Maslowski, Wieslaw ; Massonnet, François ; Meier, Walter N. ; Merryfield, William J. ; Myint, Hannah ; Navarro, Juan C. Acosta ; Petty, Alek ; Qiao, Fangli ; Schröder, David ; Schweiger, Axel ; Shu, Qi ; Sigmond, Michael ; Steele, Michael ; Stroeve, Julienne ; Sun, Nico ; Tietsche, Steffen ; Tsamados, Michel ; Wang, Keguang ; Wang, Jianwu ; Wang, Wanqiu ; Wang, Yiguo ; Wang, Yun ; Williams, James ; Yang, Qinghua ; Yuan, Xiaojun ; Zhang, Jinlun ; Zhang, Yongfei</creator><creatorcontrib>Bushuk, Mitchell ; Ali, Sahara ; Bailey, David A. ; Bao, Qing ; Batté, Lauriane ; Bhatt, Uma S. ; Blanchard-Wrigglesworth, Edward ; Blockley, Ed ; Cawley, Gavin ; Chi, Junhwa ; Counillon, François ; Coulombe, Philippe Goulet ; Cullather, Richard I. ; Diebold, Francis X. ; Dirkson, Arlan ; Exarchou, Eleftheria ; Göbel, Maximilian ; Gregory, William ; Guemas, Virginie ; Hamilton, Lawrence ; He, Bian ; Horvath, Sean ; Ionita, Monica ; Kay, Jennifer E. ; Kim, Eliot ; Kimura, Noriaki ; Kondrashov, Dmitri ; Labe, Zachary M. ; Lee, WooSung ; Lee, Younjoo J. ; Li, Cuihua ; Li, Xuewei ; Lin, Yongcheng ; Liu, Yanyun ; Maslowski, Wieslaw ; Massonnet, François ; Meier, Walter N. ; Merryfield, William J. ; Myint, Hannah ; Navarro, Juan C. Acosta ; Petty, Alek ; Qiao, Fangli ; Schröder, David ; Schweiger, Axel ; Shu, Qi ; Sigmond, Michael ; Steele, Michael ; Stroeve, Julienne ; Sun, Nico ; Tietsche, Steffen ; Tsamados, Michel ; Wang, Keguang ; Wang, Jianwu ; Wang, Wanqiu ; Wang, Yiguo ; Wang, Yun ; Williams, James ; Yang, Qinghua ; Yuan, Xiaojun ; Zhang, Jinlun ; Zhang, Yongfei ; Naval Postgraduate School, Monterey, CA (United States)</creatorcontrib><description>This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001-20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/BAMS-D-23-0163.1</identifier><language>eng</language><publisher>United States: American Meteorological Society</publisher><subject>Analysis ; Atmospheric circulation ; Climate models ; Environmental aspects ; ENVIRONMENTAL SCIENCES ; Forecasts and trends ; GEOSCIENCES ; Sea ice ; Surface-ice melting</subject><ispartof>Bulletin of the American Meteorological Society, 2024-07, Vol.105 (7), p.E1170-E1203</ispartof><rights>COPYRIGHT 2024 American Meteorological Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0063-1465 ; 0000-0002-7903-9762 ; 0000000200631465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3668,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04735388$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2448405$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bushuk, Mitchell</creatorcontrib><creatorcontrib>Ali, Sahara</creatorcontrib><creatorcontrib>Bailey, David A.</creatorcontrib><creatorcontrib>Bao, Qing</creatorcontrib><creatorcontrib>Batté, Lauriane</creatorcontrib><creatorcontrib>Bhatt, Uma S.</creatorcontrib><creatorcontrib>Blanchard-Wrigglesworth, Edward</creatorcontrib><creatorcontrib>Blockley, Ed</creatorcontrib><creatorcontrib>Cawley, Gavin</creatorcontrib><creatorcontrib>Chi, Junhwa</creatorcontrib><creatorcontrib>Counillon, François</creatorcontrib><creatorcontrib>Coulombe, Philippe Goulet</creatorcontrib><creatorcontrib>Cullather, Richard I.</creatorcontrib><creatorcontrib>Diebold, Francis X.</creatorcontrib><creatorcontrib>Dirkson, Arlan</creatorcontrib><creatorcontrib>Exarchou, Eleftheria</creatorcontrib><creatorcontrib>Göbel, Maximilian</creatorcontrib><creatorcontrib>Gregory, William</creatorcontrib><creatorcontrib>Guemas, Virginie</creatorcontrib><creatorcontrib>Hamilton, Lawrence</creatorcontrib><creatorcontrib>He, Bian</creatorcontrib><creatorcontrib>Horvath, Sean</creatorcontrib><creatorcontrib>Ionita, Monica</creatorcontrib><creatorcontrib>Kay, Jennifer E.</creatorcontrib><creatorcontrib>Kim, Eliot</creatorcontrib><creatorcontrib>Kimura, Noriaki</creatorcontrib><creatorcontrib>Kondrashov, Dmitri</creatorcontrib><creatorcontrib>Labe, Zachary M.</creatorcontrib><creatorcontrib>Lee, WooSung</creatorcontrib><creatorcontrib>Lee, Younjoo J.</creatorcontrib><creatorcontrib>Li, Cuihua</creatorcontrib><creatorcontrib>Li, Xuewei</creatorcontrib><creatorcontrib>Lin, Yongcheng</creatorcontrib><creatorcontrib>Liu, Yanyun</creatorcontrib><creatorcontrib>Maslowski, Wieslaw</creatorcontrib><creatorcontrib>Massonnet, François</creatorcontrib><creatorcontrib>Meier, Walter N.</creatorcontrib><creatorcontrib>Merryfield, William J.</creatorcontrib><creatorcontrib>Myint, Hannah</creatorcontrib><creatorcontrib>Navarro, Juan C. Acosta</creatorcontrib><creatorcontrib>Petty, Alek</creatorcontrib><creatorcontrib>Qiao, Fangli</creatorcontrib><creatorcontrib>Schröder, David</creatorcontrib><creatorcontrib>Schweiger, Axel</creatorcontrib><creatorcontrib>Shu, Qi</creatorcontrib><creatorcontrib>Sigmond, Michael</creatorcontrib><creatorcontrib>Steele, Michael</creatorcontrib><creatorcontrib>Stroeve, Julienne</creatorcontrib><creatorcontrib>Sun, Nico</creatorcontrib><creatorcontrib>Tietsche, Steffen</creatorcontrib><creatorcontrib>Tsamados, Michel</creatorcontrib><creatorcontrib>Wang, Keguang</creatorcontrib><creatorcontrib>Wang, Jianwu</creatorcontrib><creatorcontrib>Wang, Wanqiu</creatorcontrib><creatorcontrib>Wang, Yiguo</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Williams, James</creatorcontrib><creatorcontrib>Yang, Qinghua</creatorcontrib><creatorcontrib>Yuan, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Jinlun</creatorcontrib><creatorcontrib>Zhang, Yongfei</creatorcontrib><creatorcontrib>Naval Postgraduate School, Monterey, CA (United States)</creatorcontrib><title>Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison</title><title>Bulletin of the American Meteorological Society</title><description>This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001-20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.</description><subject>Analysis</subject><subject>Atmospheric circulation</subject><subject>Climate models</subject><subject>Environmental aspects</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Forecasts and trends</subject><subject>GEOSCIENCES</subject><subject>Sea ice</subject><subject>Surface-ice melting</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptks1PwyAYh4nRxPlx99joyUMnX22Jtzq_Fmc0Ts8E6ctE27IAGv3vpZkxWbJwAB6e9w2QH0JHBI8JqYqzi_p-nl_mlOWYlGxMttCIFBTnmFfVNhphjNMJxtUu2gvhfdgyQUbo7tFDY3W0_SKbwzJC9wo-q30iOgGVTTWcZ3V2_9lG27kG2oEG16u0-LBtm01ct1TeJnSAdoxqAxz-zfvo5frqeXKbzx5uppN6lmsqGMkVL4RuRLrCqzFGVEANxw0lZSGAVNgQVhFFC90oIagpQRiuGlPSSvOy4YazfXS86utCtDJoG0G_adf3oKOknAuOiySdrqQ31cqlt53yP9IpK2_rmRxY-hhWMCG-SHJPVu5CtSBtb1z0Snc2aFmL1EtQwstk5RusBfTgVet6MDbhNX-8wU-jgc7qjQWnawXJifAdF-ozBDmdP627eOVq70LwYP7fSLAcAiGHQMhLSZkcAiEJ-wXSjKPG</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Bushuk, Mitchell</creator><creator>Ali, Sahara</creator><creator>Bailey, David A.</creator><creator>Bao, Qing</creator><creator>Batté, Lauriane</creator><creator>Bhatt, Uma S.</creator><creator>Blanchard-Wrigglesworth, Edward</creator><creator>Blockley, Ed</creator><creator>Cawley, Gavin</creator><creator>Chi, Junhwa</creator><creator>Counillon, François</creator><creator>Coulombe, Philippe Goulet</creator><creator>Cullather, Richard I.</creator><creator>Diebold, Francis X.</creator><creator>Dirkson, Arlan</creator><creator>Exarchou, Eleftheria</creator><creator>Göbel, Maximilian</creator><creator>Gregory, William</creator><creator>Guemas, Virginie</creator><creator>Hamilton, Lawrence</creator><creator>He, Bian</creator><creator>Horvath, Sean</creator><creator>Ionita, Monica</creator><creator>Kay, Jennifer E.</creator><creator>Kim, Eliot</creator><creator>Kimura, Noriaki</creator><creator>Kondrashov, Dmitri</creator><creator>Labe, Zachary M.</creator><creator>Lee, WooSung</creator><creator>Lee, Younjoo J.</creator><creator>Li, Cuihua</creator><creator>Li, Xuewei</creator><creator>Lin, Yongcheng</creator><creator>Liu, Yanyun</creator><creator>Maslowski, Wieslaw</creator><creator>Massonnet, François</creator><creator>Meier, Walter N.</creator><creator>Merryfield, William J.</creator><creator>Myint, Hannah</creator><creator>Navarro, Juan C. Acosta</creator><creator>Petty, Alek</creator><creator>Qiao, Fangli</creator><creator>Schröder, David</creator><creator>Schweiger, Axel</creator><creator>Shu, Qi</creator><creator>Sigmond, Michael</creator><creator>Steele, Michael</creator><creator>Stroeve, Julienne</creator><creator>Sun, Nico</creator><creator>Tietsche, Steffen</creator><creator>Tsamados, Michel</creator><creator>Wang, Keguang</creator><creator>Wang, Jianwu</creator><creator>Wang, Wanqiu</creator><creator>Wang, Yiguo</creator><creator>Wang, Yun</creator><creator>Williams, James</creator><creator>Yang, Qinghua</creator><creator>Yuan, Xiaojun</creator><creator>Zhang, Jinlun</creator><creator>Zhang, Yongfei</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0063-1465</orcidid><orcidid>https://orcid.org/0000-0002-7903-9762</orcidid><orcidid>https://orcid.org/0000000200631465</orcidid></search><sort><creationdate>20240701</creationdate><title>Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison</title><author>Bushuk, Mitchell ; Ali, Sahara ; Bailey, David A. ; Bao, Qing ; Batté, Lauriane ; Bhatt, Uma S. ; Blanchard-Wrigglesworth, Edward ; Blockley, Ed ; Cawley, Gavin ; Chi, Junhwa ; Counillon, François ; Coulombe, Philippe Goulet ; Cullather, Richard I. ; Diebold, Francis X. ; Dirkson, Arlan ; Exarchou, Eleftheria ; Göbel, Maximilian ; Gregory, William ; Guemas, Virginie ; Hamilton, Lawrence ; He, Bian ; Horvath, Sean ; Ionita, Monica ; Kay, Jennifer E. ; Kim, Eliot ; Kimura, Noriaki ; Kondrashov, Dmitri ; Labe, Zachary M. ; Lee, WooSung ; Lee, Younjoo J. ; Li, Cuihua ; Li, Xuewei ; Lin, Yongcheng ; Liu, Yanyun ; Maslowski, Wieslaw ; Massonnet, François ; Meier, Walter N. ; Merryfield, William J. ; Myint, Hannah ; Navarro, Juan C. Acosta ; Petty, Alek ; Qiao, Fangli ; Schröder, David ; Schweiger, Axel ; Shu, Qi ; Sigmond, Michael ; Steele, Michael ; Stroeve, Julienne ; Sun, Nico ; Tietsche, Steffen ; Tsamados, Michel ; Wang, Keguang ; Wang, Jianwu ; Wang, Wanqiu ; Wang, Yiguo ; Wang, Yun ; Williams, James ; Yang, Qinghua ; Yuan, Xiaojun ; Zhang, Jinlun ; Zhang, Yongfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2831-a458cd8000bfff87e2f40d21658e170f1371a25cda882f6e8f4adf627c46d4f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Atmospheric circulation</topic><topic>Climate models</topic><topic>Environmental aspects</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Forecasts and trends</topic><topic>GEOSCIENCES</topic><topic>Sea ice</topic><topic>Surface-ice melting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bushuk, Mitchell</creatorcontrib><creatorcontrib>Ali, Sahara</creatorcontrib><creatorcontrib>Bailey, David A.</creatorcontrib><creatorcontrib>Bao, Qing</creatorcontrib><creatorcontrib>Batté, Lauriane</creatorcontrib><creatorcontrib>Bhatt, Uma S.</creatorcontrib><creatorcontrib>Blanchard-Wrigglesworth, Edward</creatorcontrib><creatorcontrib>Blockley, Ed</creatorcontrib><creatorcontrib>Cawley, Gavin</creatorcontrib><creatorcontrib>Chi, Junhwa</creatorcontrib><creatorcontrib>Counillon, François</creatorcontrib><creatorcontrib>Coulombe, Philippe Goulet</creatorcontrib><creatorcontrib>Cullather, Richard I.</creatorcontrib><creatorcontrib>Diebold, Francis X.</creatorcontrib><creatorcontrib>Dirkson, Arlan</creatorcontrib><creatorcontrib>Exarchou, Eleftheria</creatorcontrib><creatorcontrib>Göbel, Maximilian</creatorcontrib><creatorcontrib>Gregory, William</creatorcontrib><creatorcontrib>Guemas, Virginie</creatorcontrib><creatorcontrib>Hamilton, Lawrence</creatorcontrib><creatorcontrib>He, Bian</creatorcontrib><creatorcontrib>Horvath, Sean</creatorcontrib><creatorcontrib>Ionita, Monica</creatorcontrib><creatorcontrib>Kay, Jennifer E.</creatorcontrib><creatorcontrib>Kim, Eliot</creatorcontrib><creatorcontrib>Kimura, Noriaki</creatorcontrib><creatorcontrib>Kondrashov, Dmitri</creatorcontrib><creatorcontrib>Labe, Zachary M.</creatorcontrib><creatorcontrib>Lee, WooSung</creatorcontrib><creatorcontrib>Lee, Younjoo J.</creatorcontrib><creatorcontrib>Li, Cuihua</creatorcontrib><creatorcontrib>Li, Xuewei</creatorcontrib><creatorcontrib>Lin, Yongcheng</creatorcontrib><creatorcontrib>Liu, Yanyun</creatorcontrib><creatorcontrib>Maslowski, Wieslaw</creatorcontrib><creatorcontrib>Massonnet, François</creatorcontrib><creatorcontrib>Meier, Walter N.</creatorcontrib><creatorcontrib>Merryfield, William J.</creatorcontrib><creatorcontrib>Myint, Hannah</creatorcontrib><creatorcontrib>Navarro, Juan C. Acosta</creatorcontrib><creatorcontrib>Petty, Alek</creatorcontrib><creatorcontrib>Qiao, Fangli</creatorcontrib><creatorcontrib>Schröder, David</creatorcontrib><creatorcontrib>Schweiger, Axel</creatorcontrib><creatorcontrib>Shu, Qi</creatorcontrib><creatorcontrib>Sigmond, Michael</creatorcontrib><creatorcontrib>Steele, Michael</creatorcontrib><creatorcontrib>Stroeve, Julienne</creatorcontrib><creatorcontrib>Sun, Nico</creatorcontrib><creatorcontrib>Tietsche, Steffen</creatorcontrib><creatorcontrib>Tsamados, Michel</creatorcontrib><creatorcontrib>Wang, Keguang</creatorcontrib><creatorcontrib>Wang, Jianwu</creatorcontrib><creatorcontrib>Wang, Wanqiu</creatorcontrib><creatorcontrib>Wang, Yiguo</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Williams, James</creatorcontrib><creatorcontrib>Yang, Qinghua</creatorcontrib><creatorcontrib>Yuan, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Jinlun</creatorcontrib><creatorcontrib>Zhang, Yongfei</creatorcontrib><creatorcontrib>Naval Postgraduate School, Monterey, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bushuk, Mitchell</au><au>Ali, Sahara</au><au>Bailey, David A.</au><au>Bao, Qing</au><au>Batté, Lauriane</au><au>Bhatt, Uma S.</au><au>Blanchard-Wrigglesworth, Edward</au><au>Blockley, Ed</au><au>Cawley, Gavin</au><au>Chi, Junhwa</au><au>Counillon, François</au><au>Coulombe, Philippe Goulet</au><au>Cullather, Richard I.</au><au>Diebold, Francis X.</au><au>Dirkson, Arlan</au><au>Exarchou, Eleftheria</au><au>Göbel, Maximilian</au><au>Gregory, William</au><au>Guemas, Virginie</au><au>Hamilton, Lawrence</au><au>He, Bian</au><au>Horvath, Sean</au><au>Ionita, Monica</au><au>Kay, Jennifer E.</au><au>Kim, Eliot</au><au>Kimura, Noriaki</au><au>Kondrashov, Dmitri</au><au>Labe, Zachary M.</au><au>Lee, WooSung</au><au>Lee, Younjoo J.</au><au>Li, Cuihua</au><au>Li, Xuewei</au><au>Lin, Yongcheng</au><au>Liu, Yanyun</au><au>Maslowski, Wieslaw</au><au>Massonnet, François</au><au>Meier, Walter N.</au><au>Merryfield, William J.</au><au>Myint, Hannah</au><au>Navarro, Juan C. Acosta</au><au>Petty, Alek</au><au>Qiao, Fangli</au><au>Schröder, David</au><au>Schweiger, Axel</au><au>Shu, Qi</au><au>Sigmond, Michael</au><au>Steele, Michael</au><au>Stroeve, Julienne</au><au>Sun, Nico</au><au>Tietsche, Steffen</au><au>Tsamados, Michel</au><au>Wang, Keguang</au><au>Wang, Jianwu</au><au>Wang, Wanqiu</au><au>Wang, Yiguo</au><au>Wang, Yun</au><au>Williams, James</au><au>Yang, Qinghua</au><au>Yuan, Xiaojun</au><au>Zhang, Jinlun</au><au>Zhang, Yongfei</au><aucorp>Naval Postgraduate School, Monterey, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>105</volume><issue>7</issue><spage>E1170</spage><epage>E1203</epage><pages>E1170-E1203</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001-20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.</abstract><cop>United States</cop><pub>American Meteorological Society</pub><doi>10.1175/BAMS-D-23-0163.1</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-0063-1465</orcidid><orcidid>https://orcid.org/0000-0002-7903-9762</orcidid><orcidid>https://orcid.org/0000000200631465</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0007
ispartof Bulletin of the American Meteorological Society, 2024-07, Vol.105 (7), p.E1170-E1203
issn 0003-0007
1520-0477
language eng
recordid cdi_osti_scitechconnect_2448405
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis
Atmospheric circulation
Climate models
Environmental aspects
ENVIRONMENTAL SCIENCES
Forecasts and trends
GEOSCIENCES
Sea ice
Surface-ice melting
title Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20September%20Arctic%20Sea%20Ice:%20A%20Multimodel%20Seasonal%20Skill%20Comparison&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Bushuk,%20Mitchell&rft.aucorp=Naval%20Postgraduate%20School,%20Monterey,%20CA%20(United%20States)&rft.date=2024-07-01&rft.volume=105&rft.issue=7&rft.spage=E1170&rft.epage=E1203&rft.pages=E1170-E1203&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/BAMS-D-23-0163.1&rft_dat=%3Cgale_osti_%3EA805382146%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A805382146&rfr_iscdi=true