Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison
This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17...
Gespeichert in:
Veröffentlicht in: | Bulletin of the American Meteorological Society 2024-07, Vol.105 (7), p.E1170-E1203 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1203 |
---|---|
container_issue | 7 |
container_start_page | E1170 |
container_title | Bulletin of the American Meteorological Society |
container_volume | 105 |
creator | Bushuk, Mitchell Ali, Sahara Bailey, David A. Bao, Qing Batté, Lauriane Bhatt, Uma S. Blanchard-Wrigglesworth, Edward Blockley, Ed Cawley, Gavin Chi, Junhwa Counillon, François Coulombe, Philippe Goulet Cullather, Richard I. Diebold, Francis X. Dirkson, Arlan Exarchou, Eleftheria Göbel, Maximilian Gregory, William Guemas, Virginie Hamilton, Lawrence He, Bian Horvath, Sean Ionita, Monica Kay, Jennifer E. Kim, Eliot Kimura, Noriaki Kondrashov, Dmitri Labe, Zachary M. Lee, WooSung Lee, Younjoo J. Li, Cuihua Li, Xuewei Lin, Yongcheng Liu, Yanyun Maslowski, Wieslaw Massonnet, François Meier, Walter N. Merryfield, William J. Myint, Hannah Navarro, Juan C. Acosta Petty, Alek Qiao, Fangli Schröder, David Schweiger, Axel Shu, Qi Sigmond, Michael Steele, Michael Stroeve, Julienne Sun, Nico Tietsche, Steffen Tsamados, Michel Wang, Keguang Wang, Jianwu Wang, Wanqiu Wang, Yiguo Wang, Yun Williams, James Yang, Qinghua Yuan, Xiaojun Zhang, Jinlun Zhang, Yongfei |
description | This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001-20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance. |
doi_str_mv | 10.1175/BAMS-D-23-0163.1 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2448405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A805382146</galeid><sourcerecordid>A805382146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2831-a458cd8000bfff87e2f40d21658e170f1371a25cda882f6e8f4adf627c46d4f43</originalsourceid><addsrcrecordid>eNptks1PwyAYh4nRxPlx99joyUMnX22Jtzq_Fmc0Ts8E6ctE27IAGv3vpZkxWbJwAB6e9w2QH0JHBI8JqYqzi_p-nl_mlOWYlGxMttCIFBTnmFfVNhphjNMJxtUu2gvhfdgyQUbo7tFDY3W0_SKbwzJC9wo-q30iOgGVTTWcZ3V2_9lG27kG2oEG16u0-LBtm01ct1TeJnSAdoxqAxz-zfvo5frqeXKbzx5uppN6lmsqGMkVL4RuRLrCqzFGVEANxw0lZSGAVNgQVhFFC90oIagpQRiuGlPSSvOy4YazfXS86utCtDJoG0G_adf3oKOknAuOiySdrqQ31cqlt53yP9IpK2_rmRxY-hhWMCG-SHJPVu5CtSBtb1z0Snc2aFmL1EtQwstk5RusBfTgVet6MDbhNX-8wU-jgc7qjQWnawXJifAdF-ozBDmdP627eOVq70LwYP7fSLAcAiGHQMhLSZkcAiEJ-wXSjKPG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bushuk, Mitchell ; Ali, Sahara ; Bailey, David A. ; Bao, Qing ; Batté, Lauriane ; Bhatt, Uma S. ; Blanchard-Wrigglesworth, Edward ; Blockley, Ed ; Cawley, Gavin ; Chi, Junhwa ; Counillon, François ; Coulombe, Philippe Goulet ; Cullather, Richard I. ; Diebold, Francis X. ; Dirkson, Arlan ; Exarchou, Eleftheria ; Göbel, Maximilian ; Gregory, William ; Guemas, Virginie ; Hamilton, Lawrence ; He, Bian ; Horvath, Sean ; Ionita, Monica ; Kay, Jennifer E. ; Kim, Eliot ; Kimura, Noriaki ; Kondrashov, Dmitri ; Labe, Zachary M. ; Lee, WooSung ; Lee, Younjoo J. ; Li, Cuihua ; Li, Xuewei ; Lin, Yongcheng ; Liu, Yanyun ; Maslowski, Wieslaw ; Massonnet, François ; Meier, Walter N. ; Merryfield, William J. ; Myint, Hannah ; Navarro, Juan C. Acosta ; Petty, Alek ; Qiao, Fangli ; Schröder, David ; Schweiger, Axel ; Shu, Qi ; Sigmond, Michael ; Steele, Michael ; Stroeve, Julienne ; Sun, Nico ; Tietsche, Steffen ; Tsamados, Michel ; Wang, Keguang ; Wang, Jianwu ; Wang, Wanqiu ; Wang, Yiguo ; Wang, Yun ; Williams, James ; Yang, Qinghua ; Yuan, Xiaojun ; Zhang, Jinlun ; Zhang, Yongfei</creator><creatorcontrib>Bushuk, Mitchell ; Ali, Sahara ; Bailey, David A. ; Bao, Qing ; Batté, Lauriane ; Bhatt, Uma S. ; Blanchard-Wrigglesworth, Edward ; Blockley, Ed ; Cawley, Gavin ; Chi, Junhwa ; Counillon, François ; Coulombe, Philippe Goulet ; Cullather, Richard I. ; Diebold, Francis X. ; Dirkson, Arlan ; Exarchou, Eleftheria ; Göbel, Maximilian ; Gregory, William ; Guemas, Virginie ; Hamilton, Lawrence ; He, Bian ; Horvath, Sean ; Ionita, Monica ; Kay, Jennifer E. ; Kim, Eliot ; Kimura, Noriaki ; Kondrashov, Dmitri ; Labe, Zachary M. ; Lee, WooSung ; Lee, Younjoo J. ; Li, Cuihua ; Li, Xuewei ; Lin, Yongcheng ; Liu, Yanyun ; Maslowski, Wieslaw ; Massonnet, François ; Meier, Walter N. ; Merryfield, William J. ; Myint, Hannah ; Navarro, Juan C. Acosta ; Petty, Alek ; Qiao, Fangli ; Schröder, David ; Schweiger, Axel ; Shu, Qi ; Sigmond, Michael ; Steele, Michael ; Stroeve, Julienne ; Sun, Nico ; Tietsche, Steffen ; Tsamados, Michel ; Wang, Keguang ; Wang, Jianwu ; Wang, Wanqiu ; Wang, Yiguo ; Wang, Yun ; Williams, James ; Yang, Qinghua ; Yuan, Xiaojun ; Zhang, Jinlun ; Zhang, Yongfei ; Naval Postgraduate School, Monterey, CA (United States)</creatorcontrib><description>This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001-20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/BAMS-D-23-0163.1</identifier><language>eng</language><publisher>United States: American Meteorological Society</publisher><subject>Analysis ; Atmospheric circulation ; Climate models ; Environmental aspects ; ENVIRONMENTAL SCIENCES ; Forecasts and trends ; GEOSCIENCES ; Sea ice ; Surface-ice melting</subject><ispartof>Bulletin of the American Meteorological Society, 2024-07, Vol.105 (7), p.E1170-E1203</ispartof><rights>COPYRIGHT 2024 American Meteorological Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0063-1465 ; 0000-0002-7903-9762 ; 0000000200631465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3668,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04735388$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2448405$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bushuk, Mitchell</creatorcontrib><creatorcontrib>Ali, Sahara</creatorcontrib><creatorcontrib>Bailey, David A.</creatorcontrib><creatorcontrib>Bao, Qing</creatorcontrib><creatorcontrib>Batté, Lauriane</creatorcontrib><creatorcontrib>Bhatt, Uma S.</creatorcontrib><creatorcontrib>Blanchard-Wrigglesworth, Edward</creatorcontrib><creatorcontrib>Blockley, Ed</creatorcontrib><creatorcontrib>Cawley, Gavin</creatorcontrib><creatorcontrib>Chi, Junhwa</creatorcontrib><creatorcontrib>Counillon, François</creatorcontrib><creatorcontrib>Coulombe, Philippe Goulet</creatorcontrib><creatorcontrib>Cullather, Richard I.</creatorcontrib><creatorcontrib>Diebold, Francis X.</creatorcontrib><creatorcontrib>Dirkson, Arlan</creatorcontrib><creatorcontrib>Exarchou, Eleftheria</creatorcontrib><creatorcontrib>Göbel, Maximilian</creatorcontrib><creatorcontrib>Gregory, William</creatorcontrib><creatorcontrib>Guemas, Virginie</creatorcontrib><creatorcontrib>Hamilton, Lawrence</creatorcontrib><creatorcontrib>He, Bian</creatorcontrib><creatorcontrib>Horvath, Sean</creatorcontrib><creatorcontrib>Ionita, Monica</creatorcontrib><creatorcontrib>Kay, Jennifer E.</creatorcontrib><creatorcontrib>Kim, Eliot</creatorcontrib><creatorcontrib>Kimura, Noriaki</creatorcontrib><creatorcontrib>Kondrashov, Dmitri</creatorcontrib><creatorcontrib>Labe, Zachary M.</creatorcontrib><creatorcontrib>Lee, WooSung</creatorcontrib><creatorcontrib>Lee, Younjoo J.</creatorcontrib><creatorcontrib>Li, Cuihua</creatorcontrib><creatorcontrib>Li, Xuewei</creatorcontrib><creatorcontrib>Lin, Yongcheng</creatorcontrib><creatorcontrib>Liu, Yanyun</creatorcontrib><creatorcontrib>Maslowski, Wieslaw</creatorcontrib><creatorcontrib>Massonnet, François</creatorcontrib><creatorcontrib>Meier, Walter N.</creatorcontrib><creatorcontrib>Merryfield, William J.</creatorcontrib><creatorcontrib>Myint, Hannah</creatorcontrib><creatorcontrib>Navarro, Juan C. Acosta</creatorcontrib><creatorcontrib>Petty, Alek</creatorcontrib><creatorcontrib>Qiao, Fangli</creatorcontrib><creatorcontrib>Schröder, David</creatorcontrib><creatorcontrib>Schweiger, Axel</creatorcontrib><creatorcontrib>Shu, Qi</creatorcontrib><creatorcontrib>Sigmond, Michael</creatorcontrib><creatorcontrib>Steele, Michael</creatorcontrib><creatorcontrib>Stroeve, Julienne</creatorcontrib><creatorcontrib>Sun, Nico</creatorcontrib><creatorcontrib>Tietsche, Steffen</creatorcontrib><creatorcontrib>Tsamados, Michel</creatorcontrib><creatorcontrib>Wang, Keguang</creatorcontrib><creatorcontrib>Wang, Jianwu</creatorcontrib><creatorcontrib>Wang, Wanqiu</creatorcontrib><creatorcontrib>Wang, Yiguo</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Williams, James</creatorcontrib><creatorcontrib>Yang, Qinghua</creatorcontrib><creatorcontrib>Yuan, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Jinlun</creatorcontrib><creatorcontrib>Zhang, Yongfei</creatorcontrib><creatorcontrib>Naval Postgraduate School, Monterey, CA (United States)</creatorcontrib><title>Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison</title><title>Bulletin of the American Meteorological Society</title><description>This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001-20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.</description><subject>Analysis</subject><subject>Atmospheric circulation</subject><subject>Climate models</subject><subject>Environmental aspects</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Forecasts and trends</subject><subject>GEOSCIENCES</subject><subject>Sea ice</subject><subject>Surface-ice melting</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptks1PwyAYh4nRxPlx99joyUMnX22Jtzq_Fmc0Ts8E6ctE27IAGv3vpZkxWbJwAB6e9w2QH0JHBI8JqYqzi_p-nl_mlOWYlGxMttCIFBTnmFfVNhphjNMJxtUu2gvhfdgyQUbo7tFDY3W0_SKbwzJC9wo-q30iOgGVTTWcZ3V2_9lG27kG2oEG16u0-LBtm01ct1TeJnSAdoxqAxz-zfvo5frqeXKbzx5uppN6lmsqGMkVL4RuRLrCqzFGVEANxw0lZSGAVNgQVhFFC90oIagpQRiuGlPSSvOy4YazfXS86utCtDJoG0G_adf3oKOknAuOiySdrqQ31cqlt53yP9IpK2_rmRxY-hhWMCG-SHJPVu5CtSBtb1z0Snc2aFmL1EtQwstk5RusBfTgVet6MDbhNX-8wU-jgc7qjQWnawXJifAdF-ozBDmdP627eOVq70LwYP7fSLAcAiGHQMhLSZkcAiEJ-wXSjKPG</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Bushuk, Mitchell</creator><creator>Ali, Sahara</creator><creator>Bailey, David A.</creator><creator>Bao, Qing</creator><creator>Batté, Lauriane</creator><creator>Bhatt, Uma S.</creator><creator>Blanchard-Wrigglesworth, Edward</creator><creator>Blockley, Ed</creator><creator>Cawley, Gavin</creator><creator>Chi, Junhwa</creator><creator>Counillon, François</creator><creator>Coulombe, Philippe Goulet</creator><creator>Cullather, Richard I.</creator><creator>Diebold, Francis X.</creator><creator>Dirkson, Arlan</creator><creator>Exarchou, Eleftheria</creator><creator>Göbel, Maximilian</creator><creator>Gregory, William</creator><creator>Guemas, Virginie</creator><creator>Hamilton, Lawrence</creator><creator>He, Bian</creator><creator>Horvath, Sean</creator><creator>Ionita, Monica</creator><creator>Kay, Jennifer E.</creator><creator>Kim, Eliot</creator><creator>Kimura, Noriaki</creator><creator>Kondrashov, Dmitri</creator><creator>Labe, Zachary M.</creator><creator>Lee, WooSung</creator><creator>Lee, Younjoo J.</creator><creator>Li, Cuihua</creator><creator>Li, Xuewei</creator><creator>Lin, Yongcheng</creator><creator>Liu, Yanyun</creator><creator>Maslowski, Wieslaw</creator><creator>Massonnet, François</creator><creator>Meier, Walter N.</creator><creator>Merryfield, William J.</creator><creator>Myint, Hannah</creator><creator>Navarro, Juan C. Acosta</creator><creator>Petty, Alek</creator><creator>Qiao, Fangli</creator><creator>Schröder, David</creator><creator>Schweiger, Axel</creator><creator>Shu, Qi</creator><creator>Sigmond, Michael</creator><creator>Steele, Michael</creator><creator>Stroeve, Julienne</creator><creator>Sun, Nico</creator><creator>Tietsche, Steffen</creator><creator>Tsamados, Michel</creator><creator>Wang, Keguang</creator><creator>Wang, Jianwu</creator><creator>Wang, Wanqiu</creator><creator>Wang, Yiguo</creator><creator>Wang, Yun</creator><creator>Williams, James</creator><creator>Yang, Qinghua</creator><creator>Yuan, Xiaojun</creator><creator>Zhang, Jinlun</creator><creator>Zhang, Yongfei</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0063-1465</orcidid><orcidid>https://orcid.org/0000-0002-7903-9762</orcidid><orcidid>https://orcid.org/0000000200631465</orcidid></search><sort><creationdate>20240701</creationdate><title>Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison</title><author>Bushuk, Mitchell ; Ali, Sahara ; Bailey, David A. ; Bao, Qing ; Batté, Lauriane ; Bhatt, Uma S. ; Blanchard-Wrigglesworth, Edward ; Blockley, Ed ; Cawley, Gavin ; Chi, Junhwa ; Counillon, François ; Coulombe, Philippe Goulet ; Cullather, Richard I. ; Diebold, Francis X. ; Dirkson, Arlan ; Exarchou, Eleftheria ; Göbel, Maximilian ; Gregory, William ; Guemas, Virginie ; Hamilton, Lawrence ; He, Bian ; Horvath, Sean ; Ionita, Monica ; Kay, Jennifer E. ; Kim, Eliot ; Kimura, Noriaki ; Kondrashov, Dmitri ; Labe, Zachary M. ; Lee, WooSung ; Lee, Younjoo J. ; Li, Cuihua ; Li, Xuewei ; Lin, Yongcheng ; Liu, Yanyun ; Maslowski, Wieslaw ; Massonnet, François ; Meier, Walter N. ; Merryfield, William J. ; Myint, Hannah ; Navarro, Juan C. Acosta ; Petty, Alek ; Qiao, Fangli ; Schröder, David ; Schweiger, Axel ; Shu, Qi ; Sigmond, Michael ; Steele, Michael ; Stroeve, Julienne ; Sun, Nico ; Tietsche, Steffen ; Tsamados, Michel ; Wang, Keguang ; Wang, Jianwu ; Wang, Wanqiu ; Wang, Yiguo ; Wang, Yun ; Williams, James ; Yang, Qinghua ; Yuan, Xiaojun ; Zhang, Jinlun ; Zhang, Yongfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2831-a458cd8000bfff87e2f40d21658e170f1371a25cda882f6e8f4adf627c46d4f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Atmospheric circulation</topic><topic>Climate models</topic><topic>Environmental aspects</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Forecasts and trends</topic><topic>GEOSCIENCES</topic><topic>Sea ice</topic><topic>Surface-ice melting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bushuk, Mitchell</creatorcontrib><creatorcontrib>Ali, Sahara</creatorcontrib><creatorcontrib>Bailey, David A.</creatorcontrib><creatorcontrib>Bao, Qing</creatorcontrib><creatorcontrib>Batté, Lauriane</creatorcontrib><creatorcontrib>Bhatt, Uma S.</creatorcontrib><creatorcontrib>Blanchard-Wrigglesworth, Edward</creatorcontrib><creatorcontrib>Blockley, Ed</creatorcontrib><creatorcontrib>Cawley, Gavin</creatorcontrib><creatorcontrib>Chi, Junhwa</creatorcontrib><creatorcontrib>Counillon, François</creatorcontrib><creatorcontrib>Coulombe, Philippe Goulet</creatorcontrib><creatorcontrib>Cullather, Richard I.</creatorcontrib><creatorcontrib>Diebold, Francis X.</creatorcontrib><creatorcontrib>Dirkson, Arlan</creatorcontrib><creatorcontrib>Exarchou, Eleftheria</creatorcontrib><creatorcontrib>Göbel, Maximilian</creatorcontrib><creatorcontrib>Gregory, William</creatorcontrib><creatorcontrib>Guemas, Virginie</creatorcontrib><creatorcontrib>Hamilton, Lawrence</creatorcontrib><creatorcontrib>He, Bian</creatorcontrib><creatorcontrib>Horvath, Sean</creatorcontrib><creatorcontrib>Ionita, Monica</creatorcontrib><creatorcontrib>Kay, Jennifer E.</creatorcontrib><creatorcontrib>Kim, Eliot</creatorcontrib><creatorcontrib>Kimura, Noriaki</creatorcontrib><creatorcontrib>Kondrashov, Dmitri</creatorcontrib><creatorcontrib>Labe, Zachary M.</creatorcontrib><creatorcontrib>Lee, WooSung</creatorcontrib><creatorcontrib>Lee, Younjoo J.</creatorcontrib><creatorcontrib>Li, Cuihua</creatorcontrib><creatorcontrib>Li, Xuewei</creatorcontrib><creatorcontrib>Lin, Yongcheng</creatorcontrib><creatorcontrib>Liu, Yanyun</creatorcontrib><creatorcontrib>Maslowski, Wieslaw</creatorcontrib><creatorcontrib>Massonnet, François</creatorcontrib><creatorcontrib>Meier, Walter N.</creatorcontrib><creatorcontrib>Merryfield, William J.</creatorcontrib><creatorcontrib>Myint, Hannah</creatorcontrib><creatorcontrib>Navarro, Juan C. Acosta</creatorcontrib><creatorcontrib>Petty, Alek</creatorcontrib><creatorcontrib>Qiao, Fangli</creatorcontrib><creatorcontrib>Schröder, David</creatorcontrib><creatorcontrib>Schweiger, Axel</creatorcontrib><creatorcontrib>Shu, Qi</creatorcontrib><creatorcontrib>Sigmond, Michael</creatorcontrib><creatorcontrib>Steele, Michael</creatorcontrib><creatorcontrib>Stroeve, Julienne</creatorcontrib><creatorcontrib>Sun, Nico</creatorcontrib><creatorcontrib>Tietsche, Steffen</creatorcontrib><creatorcontrib>Tsamados, Michel</creatorcontrib><creatorcontrib>Wang, Keguang</creatorcontrib><creatorcontrib>Wang, Jianwu</creatorcontrib><creatorcontrib>Wang, Wanqiu</creatorcontrib><creatorcontrib>Wang, Yiguo</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Williams, James</creatorcontrib><creatorcontrib>Yang, Qinghua</creatorcontrib><creatorcontrib>Yuan, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Jinlun</creatorcontrib><creatorcontrib>Zhang, Yongfei</creatorcontrib><creatorcontrib>Naval Postgraduate School, Monterey, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bushuk, Mitchell</au><au>Ali, Sahara</au><au>Bailey, David A.</au><au>Bao, Qing</au><au>Batté, Lauriane</au><au>Bhatt, Uma S.</au><au>Blanchard-Wrigglesworth, Edward</au><au>Blockley, Ed</au><au>Cawley, Gavin</au><au>Chi, Junhwa</au><au>Counillon, François</au><au>Coulombe, Philippe Goulet</au><au>Cullather, Richard I.</au><au>Diebold, Francis X.</au><au>Dirkson, Arlan</au><au>Exarchou, Eleftheria</au><au>Göbel, Maximilian</au><au>Gregory, William</au><au>Guemas, Virginie</au><au>Hamilton, Lawrence</au><au>He, Bian</au><au>Horvath, Sean</au><au>Ionita, Monica</au><au>Kay, Jennifer E.</au><au>Kim, Eliot</au><au>Kimura, Noriaki</au><au>Kondrashov, Dmitri</au><au>Labe, Zachary M.</au><au>Lee, WooSung</au><au>Lee, Younjoo J.</au><au>Li, Cuihua</au><au>Li, Xuewei</au><au>Lin, Yongcheng</au><au>Liu, Yanyun</au><au>Maslowski, Wieslaw</au><au>Massonnet, François</au><au>Meier, Walter N.</au><au>Merryfield, William J.</au><au>Myint, Hannah</au><au>Navarro, Juan C. Acosta</au><au>Petty, Alek</au><au>Qiao, Fangli</au><au>Schröder, David</au><au>Schweiger, Axel</au><au>Shu, Qi</au><au>Sigmond, Michael</au><au>Steele, Michael</au><au>Stroeve, Julienne</au><au>Sun, Nico</au><au>Tietsche, Steffen</au><au>Tsamados, Michel</au><au>Wang, Keguang</au><au>Wang, Jianwu</au><au>Wang, Wanqiu</au><au>Wang, Yiguo</au><au>Wang, Yun</au><au>Williams, James</au><au>Yang, Qinghua</au><au>Yuan, Xiaojun</au><au>Zhang, Jinlun</au><au>Zhang, Yongfei</au><aucorp>Naval Postgraduate School, Monterey, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>105</volume><issue>7</issue><spage>E1170</spage><epage>E1203</epage><pages>E1170-E1203</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001-20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.</abstract><cop>United States</cop><pub>American Meteorological Society</pub><doi>10.1175/BAMS-D-23-0163.1</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-0063-1465</orcidid><orcidid>https://orcid.org/0000-0002-7903-9762</orcidid><orcidid>https://orcid.org/0000000200631465</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0007 |
ispartof | Bulletin of the American Meteorological Society, 2024-07, Vol.105 (7), p.E1170-E1203 |
issn | 0003-0007 1520-0477 |
language | eng |
recordid | cdi_osti_scitechconnect_2448405 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Analysis Atmospheric circulation Climate models Environmental aspects ENVIRONMENTAL SCIENCES Forecasts and trends GEOSCIENCES Sea ice Surface-ice melting |
title | Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20September%20Arctic%20Sea%20Ice:%20A%20Multimodel%20Seasonal%20Skill%20Comparison&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Bushuk,%20Mitchell&rft.aucorp=Naval%20Postgraduate%20School,%20Monterey,%20CA%20(United%20States)&rft.date=2024-07-01&rft.volume=105&rft.issue=7&rft.spage=E1170&rft.epage=E1203&rft.pages=E1170-E1203&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/BAMS-D-23-0163.1&rft_dat=%3Cgale_osti_%3EA805382146%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A805382146&rfr_iscdi=true |