Mo3S13 Chalcogel: A High-Capacity Electrode for Conversion-Based Li-Ion Batteries

Despite large theoretical energy densities, metal-sulfide electrodes for energy storage systems face several limitations that impact the practical realization. Here, we present the solution-processable, room temperature (RT) synthesis, local structures, and application of a sulfur-rich Mo3S13 chalco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2024-03, Vol.17 (11)
Hauptverfasser: Islam, Taohedul, Roy, Subrata Chandra, Bayat, Sahar, Weret, Misganaw Adigo, Hoffman, Justin M., Rao, Keerthan R., Sawicki, Conrad, Nie, Jing, Alam, Robiul, Oketola, Oluwaseun, Donley, Carrie L., Kumbhar, Amar, Feng, Renfei, Wiaderek, Kamila M., Risko, Chad, Amin, Ruhul, Islam, Saiful M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title ChemSusChem
container_volume 17
creator Islam, Taohedul
Roy, Subrata Chandra
Bayat, Sahar
Weret, Misganaw Adigo
Hoffman, Justin M.
Rao, Keerthan R.
Sawicki, Conrad
Nie, Jing
Alam, Robiul
Oketola, Oluwaseun
Donley, Carrie L.
Kumbhar, Amar
Feng, Renfei
Wiaderek, Kamila M.
Risko, Chad
Amin, Ruhul
Islam, Saiful M.
description Despite large theoretical energy densities, metal-sulfide electrodes for energy storage systems face several limitations that impact the practical realization. Here, we present the solution-processable, room temperature (RT) synthesis, local structures, and application of a sulfur-rich Mo3S13 chalcogel as a conversion-based electrode for lithium-sulfide batteries (LiSBs). The structure of the amorphous Mo3S13 chalcogel is derived through operando Raman spectroscopy, synchrotron X-ray pair distribution function (PDF), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) analysis, along with ab initio molecular dynamics (AIMD) simulations. A key feature of the three-dimensional (3D) network is the connection of Mo3S13 units through S–S bonds. Li/Mo3S13 half-cells deliver initial capacity of 1013 mAh g–1 during the first discharge. After the activation cycles, the capacity stabilizes and maintains 312 mAh g–1 at a C/3 rate after 140 cycles, demonstrating sustained performance over subsequent cycling. Such high-capacity and stability are attributed to the high density of (poly)sulfide bonds and the stable Mo–S coordination in Mo3S13 chalcogel. Importantly, these findings showcase the potential of Mo3S13 chalcogels as metal-sulfide electrode materials for LiSBs.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2441499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441499</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24414993</originalsourceid><addsrcrecordid>eNqNzL0KwjAUQOEMCtafdwjugdbEYN1sqCjoILqXkN62kZArSRB8ezv4AE5nOXwTkhU7KdhW8mJG5jE-81zmpZQZuV2R3wtO1aCdwR7cnh7oyfYDU_qljU0fWjswKWALtMNAFfo3hGjRs0pHaOnFsjN6WumUIFiISzLttIuw-nVB1sf6oU4MY7JNHEkwg0HvR7XZCFGIsuR_TV-iGjza</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mo3S13 Chalcogel: A High-Capacity Electrode for Conversion-Based Li-Ion Batteries</title><source>Wiley Online Library All Journals</source><creator>Islam, Taohedul ; Roy, Subrata Chandra ; Bayat, Sahar ; Weret, Misganaw Adigo ; Hoffman, Justin M. ; Rao, Keerthan R. ; Sawicki, Conrad ; Nie, Jing ; Alam, Robiul ; Oketola, Oluwaseun ; Donley, Carrie L. ; Kumbhar, Amar ; Feng, Renfei ; Wiaderek, Kamila M. ; Risko, Chad ; Amin, Ruhul ; Islam, Saiful M.</creator><creatorcontrib>Islam, Taohedul ; Roy, Subrata Chandra ; Bayat, Sahar ; Weret, Misganaw Adigo ; Hoffman, Justin M. ; Rao, Keerthan R. ; Sawicki, Conrad ; Nie, Jing ; Alam, Robiul ; Oketola, Oluwaseun ; Donley, Carrie L. ; Kumbhar, Amar ; Feng, Renfei ; Wiaderek, Kamila M. ; Risko, Chad ; Amin, Ruhul ; Islam, Saiful M. ; Savannah River National Laboratory (SRNL), Aiken, SC (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Jackson State University, MS (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Despite large theoretical energy densities, metal-sulfide electrodes for energy storage systems face several limitations that impact the practical realization. Here, we present the solution-processable, room temperature (RT) synthesis, local structures, and application of a sulfur-rich Mo3S13 chalcogel as a conversion-based electrode for lithium-sulfide batteries (LiSBs). The structure of the amorphous Mo3S13 chalcogel is derived through operando Raman spectroscopy, synchrotron X-ray pair distribution function (PDF), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) analysis, along with ab initio molecular dynamics (AIMD) simulations. A key feature of the three-dimensional (3D) network is the connection of Mo3S13 units through S–S bonds. Li/Mo3S13 half-cells deliver initial capacity of 1013 mAh g–1 during the first discharge. After the activation cycles, the capacity stabilizes and maintains 312 mAh g–1 at a C/3 rate after 140 cycles, demonstrating sustained performance over subsequent cycling. Such high-capacity and stability are attributed to the high density of (poly)sulfide bonds and the stable Mo–S coordination in Mo3S13 chalcogel. Importantly, these findings showcase the potential of Mo3S13 chalcogels as metal-sulfide electrode materials for LiSBs.</description><identifier>ISSN: 1864-5631</identifier><language>eng</language><publisher>United States: ChemPubSoc Europe</publisher><subject>aerogels ; conversion-based batteries ; ENERGY STORAGE ; lithium-sulfide batteries ; Mo3S13 chalcogels</subject><ispartof>ChemSusChem, 2024-03, Vol.17 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000185181856 ; 0000000200543510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2441499$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Islam, Taohedul</creatorcontrib><creatorcontrib>Roy, Subrata Chandra</creatorcontrib><creatorcontrib>Bayat, Sahar</creatorcontrib><creatorcontrib>Weret, Misganaw Adigo</creatorcontrib><creatorcontrib>Hoffman, Justin M.</creatorcontrib><creatorcontrib>Rao, Keerthan R.</creatorcontrib><creatorcontrib>Sawicki, Conrad</creatorcontrib><creatorcontrib>Nie, Jing</creatorcontrib><creatorcontrib>Alam, Robiul</creatorcontrib><creatorcontrib>Oketola, Oluwaseun</creatorcontrib><creatorcontrib>Donley, Carrie L.</creatorcontrib><creatorcontrib>Kumbhar, Amar</creatorcontrib><creatorcontrib>Feng, Renfei</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Amin, Ruhul</creatorcontrib><creatorcontrib>Islam, Saiful M.</creatorcontrib><creatorcontrib>Savannah River National Laboratory (SRNL), Aiken, SC (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Jackson State University, MS (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Mo3S13 Chalcogel: A High-Capacity Electrode for Conversion-Based Li-Ion Batteries</title><title>ChemSusChem</title><description>Despite large theoretical energy densities, metal-sulfide electrodes for energy storage systems face several limitations that impact the practical realization. Here, we present the solution-processable, room temperature (RT) synthesis, local structures, and application of a sulfur-rich Mo3S13 chalcogel as a conversion-based electrode for lithium-sulfide batteries (LiSBs). The structure of the amorphous Mo3S13 chalcogel is derived through operando Raman spectroscopy, synchrotron X-ray pair distribution function (PDF), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) analysis, along with ab initio molecular dynamics (AIMD) simulations. A key feature of the three-dimensional (3D) network is the connection of Mo3S13 units through S–S bonds. Li/Mo3S13 half-cells deliver initial capacity of 1013 mAh g–1 during the first discharge. After the activation cycles, the capacity stabilizes and maintains 312 mAh g–1 at a C/3 rate after 140 cycles, demonstrating sustained performance over subsequent cycling. Such high-capacity and stability are attributed to the high density of (poly)sulfide bonds and the stable Mo–S coordination in Mo3S13 chalcogel. Importantly, these findings showcase the potential of Mo3S13 chalcogels as metal-sulfide electrode materials for LiSBs.</description><subject>aerogels</subject><subject>conversion-based batteries</subject><subject>ENERGY STORAGE</subject><subject>lithium-sulfide batteries</subject><subject>Mo3S13 chalcogels</subject><issn>1864-5631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNzL0KwjAUQOEMCtafdwjugdbEYN1sqCjoILqXkN62kZArSRB8ezv4AE5nOXwTkhU7KdhW8mJG5jE-81zmpZQZuV2R3wtO1aCdwR7cnh7oyfYDU_qljU0fWjswKWALtMNAFfo3hGjRs0pHaOnFsjN6WumUIFiISzLttIuw-nVB1sf6oU4MY7JNHEkwg0HvR7XZCFGIsuR_TV-iGjza</recordid><startdate>20240322</startdate><enddate>20240322</enddate><creator>Islam, Taohedul</creator><creator>Roy, Subrata Chandra</creator><creator>Bayat, Sahar</creator><creator>Weret, Misganaw Adigo</creator><creator>Hoffman, Justin M.</creator><creator>Rao, Keerthan R.</creator><creator>Sawicki, Conrad</creator><creator>Nie, Jing</creator><creator>Alam, Robiul</creator><creator>Oketola, Oluwaseun</creator><creator>Donley, Carrie L.</creator><creator>Kumbhar, Amar</creator><creator>Feng, Renfei</creator><creator>Wiaderek, Kamila M.</creator><creator>Risko, Chad</creator><creator>Amin, Ruhul</creator><creator>Islam, Saiful M.</creator><general>ChemPubSoc Europe</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000185181856</orcidid><orcidid>https://orcid.org/0000000200543510</orcidid></search><sort><creationdate>20240322</creationdate><title>Mo3S13 Chalcogel: A High-Capacity Electrode for Conversion-Based Li-Ion Batteries</title><author>Islam, Taohedul ; Roy, Subrata Chandra ; Bayat, Sahar ; Weret, Misganaw Adigo ; Hoffman, Justin M. ; Rao, Keerthan R. ; Sawicki, Conrad ; Nie, Jing ; Alam, Robiul ; Oketola, Oluwaseun ; Donley, Carrie L. ; Kumbhar, Amar ; Feng, Renfei ; Wiaderek, Kamila M. ; Risko, Chad ; Amin, Ruhul ; Islam, Saiful M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24414993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aerogels</topic><topic>conversion-based batteries</topic><topic>ENERGY STORAGE</topic><topic>lithium-sulfide batteries</topic><topic>Mo3S13 chalcogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Taohedul</creatorcontrib><creatorcontrib>Roy, Subrata Chandra</creatorcontrib><creatorcontrib>Bayat, Sahar</creatorcontrib><creatorcontrib>Weret, Misganaw Adigo</creatorcontrib><creatorcontrib>Hoffman, Justin M.</creatorcontrib><creatorcontrib>Rao, Keerthan R.</creatorcontrib><creatorcontrib>Sawicki, Conrad</creatorcontrib><creatorcontrib>Nie, Jing</creatorcontrib><creatorcontrib>Alam, Robiul</creatorcontrib><creatorcontrib>Oketola, Oluwaseun</creatorcontrib><creatorcontrib>Donley, Carrie L.</creatorcontrib><creatorcontrib>Kumbhar, Amar</creatorcontrib><creatorcontrib>Feng, Renfei</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Amin, Ruhul</creatorcontrib><creatorcontrib>Islam, Saiful M.</creatorcontrib><creatorcontrib>Savannah River National Laboratory (SRNL), Aiken, SC (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Jackson State University, MS (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Taohedul</au><au>Roy, Subrata Chandra</au><au>Bayat, Sahar</au><au>Weret, Misganaw Adigo</au><au>Hoffman, Justin M.</au><au>Rao, Keerthan R.</au><au>Sawicki, Conrad</au><au>Nie, Jing</au><au>Alam, Robiul</au><au>Oketola, Oluwaseun</au><au>Donley, Carrie L.</au><au>Kumbhar, Amar</au><au>Feng, Renfei</au><au>Wiaderek, Kamila M.</au><au>Risko, Chad</au><au>Amin, Ruhul</au><au>Islam, Saiful M.</au><aucorp>Savannah River National Laboratory (SRNL), Aiken, SC (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Jackson State University, MS (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mo3S13 Chalcogel: A High-Capacity Electrode for Conversion-Based Li-Ion Batteries</atitle><jtitle>ChemSusChem</jtitle><date>2024-03-22</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><issn>1864-5631</issn><abstract>Despite large theoretical energy densities, metal-sulfide electrodes for energy storage systems face several limitations that impact the practical realization. Here, we present the solution-processable, room temperature (RT) synthesis, local structures, and application of a sulfur-rich Mo3S13 chalcogel as a conversion-based electrode for lithium-sulfide batteries (LiSBs). The structure of the amorphous Mo3S13 chalcogel is derived through operando Raman spectroscopy, synchrotron X-ray pair distribution function (PDF), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) analysis, along with ab initio molecular dynamics (AIMD) simulations. A key feature of the three-dimensional (3D) network is the connection of Mo3S13 units through S–S bonds. Li/Mo3S13 half-cells deliver initial capacity of 1013 mAh g–1 during the first discharge. After the activation cycles, the capacity stabilizes and maintains 312 mAh g–1 at a C/3 rate after 140 cycles, demonstrating sustained performance over subsequent cycling. Such high-capacity and stability are attributed to the high density of (poly)sulfide bonds and the stable Mo–S coordination in Mo3S13 chalcogel. Importantly, these findings showcase the potential of Mo3S13 chalcogels as metal-sulfide electrode materials for LiSBs.</abstract><cop>United States</cop><pub>ChemPubSoc Europe</pub><orcidid>https://orcid.org/0000000185181856</orcidid><orcidid>https://orcid.org/0000000200543510</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2024-03, Vol.17 (11)
issn 1864-5631
language eng
recordid cdi_osti_scitechconnect_2441499
source Wiley Online Library All Journals
subjects aerogels
conversion-based batteries
ENERGY STORAGE
lithium-sulfide batteries
Mo3S13 chalcogels
title Mo3S13 Chalcogel: A High-Capacity Electrode for Conversion-Based Li-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mo3S13%20Chalcogel:%20A%20High-Capacity%20Electrode%20for%20Conversion-Based%20Li-Ion%20Batteries&rft.jtitle=ChemSusChem&rft.au=Islam,%20Taohedul&rft.aucorp=Savannah%20River%20National%20Laboratory%20(SRNL),%20Aiken,%20SC%20(United%20States)&rft.date=2024-03-22&rft.volume=17&rft.issue=11&rft.issn=1864-5631&rft_id=info:doi/&rft_dat=%3Costi%3E2441499%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true