Mapping structural and dynamic divergence across the MBOAT family

Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structure (London) 2024-07, Vol.32 (7), p.1011-1022.e3
Hauptverfasser: Ansell, T. Bertie, Healy, Megan, Coupland, Claire E., Sansom, Mark S.P., Siebold, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022.e3
container_issue 7
container_start_page 1011
container_title Structure (London)
container_volume 32
creator Ansell, T. Bertie
Healy, Megan
Coupland, Claire E.
Sansom, Mark S.P.
Siebold, Christian
description Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain. Here, we combine comparative molecular dynamics (MD) simulations with bioinformatics to assess molecular and interactional divergence across the family. In simulations, MBOATs differentially distort the bilayer depending on their substrate type. Additionally, we identify lipid binding sites surrounding reactant gates in the surrounding membrane. Complementary bioinformatic analyses reveal a conserved role for re-entrant loop-2 in MBOAT fold stabilization and a key hydrogen bond bridging DGAT1 dimerization. Finally, we predict differences in MBOAT solvation and water gating properties. These data are pertinent to the design of MBOAT-specific inhibitors that encompass dynamic information within cellular mimetic environments. [Display omitted] •MBOAT subfamilies differentially distort the surrounding bilayer•Conserved residue pairs on re-entrant loop-2 stabilize the MBOAT fold•A conserved hydrogen bond interconnects the DGAT1 dimer•Solvent gating and hydration properties differ across the family Ansell et al. use molecular dynamics simulations and bioinformatic analyses to compare interactions across the MBOAT family. MBOAT subfamilies differentially interact with themselves, the surrounding membrane, and solvent environments. These data are pertinent to the design of MBOAT-specific inhibitors and family classification.
doi_str_mv 10.1016/j.str.2024.03.014
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2440879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212624000960</els_id><sourcerecordid>3043075889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-91baaaeedffcc46b69ff8ba4b1092b233ed7849739376ea106d8489d8b5c8fa03</originalsourceid><addsrcrecordid>eNp9kD1P5DAURS0EglngB9CgiIom4fkjji2qWcQuSCAaqC3HfgGPMsmsnYw0_36THZaS6jXnXt13CLmgUFCg8mZVpCEWDJgogBdAxQFZUFWpXFAlD8kCtNQ5o0yekB8prQCAlQDH5IQryWXJ-IIsn-1mE7r3bGoa3TBG22a285nfdXYdXObDFuM7dg4z62KfUjZ8YPb882X5mjUT0e7OyFFj24Tnn_eUvP26f717yJ9efj_eLZ9yx6tyyDWtrbWIvmmcE7KWumlUbUVNQbOacY6-UkJXXPNKoqUgvRJKe1WXTjUW-Cm52vf2aQgmuTCg-3B916EbDBMCVKUn6HoPbWL_Z8Q0mHVIDtvWdtiPyXAQHKpSqRmle_TfWxEbs4lhbePOUDCzXrMykxQz6zXAzaR3ylx-1o_1Gv1X4r_PCbjdAziZ2AaM89DZng9x3un78E39X8OLilM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043075889</pqid></control><display><type>article</type><title>Mapping structural and dynamic divergence across the MBOAT family</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ansell, T. Bertie ; Healy, Megan ; Coupland, Claire E. ; Sansom, Mark S.P. ; Siebold, Christian</creator><creatorcontrib>Ansell, T. Bertie ; Healy, Megan ; Coupland, Claire E. ; Sansom, Mark S.P. ; Siebold, Christian ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain. Here, we combine comparative molecular dynamics (MD) simulations with bioinformatics to assess molecular and interactional divergence across the family. In simulations, MBOATs differentially distort the bilayer depending on their substrate type. Additionally, we identify lipid binding sites surrounding reactant gates in the surrounding membrane. Complementary bioinformatic analyses reveal a conserved role for re-entrant loop-2 in MBOAT fold stabilization and a key hydrogen bond bridging DGAT1 dimerization. Finally, we predict differences in MBOAT solvation and water gating properties. These data are pertinent to the design of MBOAT-specific inhibitors that encompass dynamic information within cellular mimetic environments. [Display omitted] •MBOAT subfamilies differentially distort the surrounding bilayer•Conserved residue pairs on re-entrant loop-2 stabilize the MBOAT fold•A conserved hydrogen bond interconnects the DGAT1 dimer•Solvent gating and hydration properties differ across the family Ansell et al. use molecular dynamics simulations and bioinformatic analyses to compare interactions across the MBOAT family. MBOAT subfamilies differentially interact with themselves, the surrounding membrane, and solvent environments. These data are pertinent to the design of MBOAT-specific inhibitors and family classification.</description><identifier>ISSN: 0969-2126</identifier><identifier>ISSN: 1878-4186</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2024.03.014</identifier><identifier>PMID: 38636523</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acyltransferases - chemistry ; Acyltransferases - genetics ; Acyltransferases - metabolism ; bilayer ; Binding Sites ; catalysis ; Catalytic Domain ; enzyme ; Humans ; Hydrogen Bonding ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; lipids ; MBOAT ; membrane protein ; molecular dynamics ; Molecular Dynamics Simulation ; Protein Binding ; Protein Multimerization ; simulation ; Substrate Specificity</subject><ispartof>Structure (London), 2024-07, Vol.32 (7), p.1011-1022.e3</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c375t-91baaaeedffcc46b69ff8ba4b1092b233ed7849739376ea106d8489d8b5c8fa03</cites><orcidid>0000-0003-4870-5387 ; 0000000348705387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.str.2024.03.014$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38636523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2440879$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ansell, T. Bertie</creatorcontrib><creatorcontrib>Healy, Megan</creatorcontrib><creatorcontrib>Coupland, Claire E.</creatorcontrib><creatorcontrib>Sansom, Mark S.P.</creatorcontrib><creatorcontrib>Siebold, Christian</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Mapping structural and dynamic divergence across the MBOAT family</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain. Here, we combine comparative molecular dynamics (MD) simulations with bioinformatics to assess molecular and interactional divergence across the family. In simulations, MBOATs differentially distort the bilayer depending on their substrate type. Additionally, we identify lipid binding sites surrounding reactant gates in the surrounding membrane. Complementary bioinformatic analyses reveal a conserved role for re-entrant loop-2 in MBOAT fold stabilization and a key hydrogen bond bridging DGAT1 dimerization. Finally, we predict differences in MBOAT solvation and water gating properties. These data are pertinent to the design of MBOAT-specific inhibitors that encompass dynamic information within cellular mimetic environments. [Display omitted] •MBOAT subfamilies differentially distort the surrounding bilayer•Conserved residue pairs on re-entrant loop-2 stabilize the MBOAT fold•A conserved hydrogen bond interconnects the DGAT1 dimer•Solvent gating and hydration properties differ across the family Ansell et al. use molecular dynamics simulations and bioinformatic analyses to compare interactions across the MBOAT family. MBOAT subfamilies differentially interact with themselves, the surrounding membrane, and solvent environments. These data are pertinent to the design of MBOAT-specific inhibitors and family classification.</description><subject>Acyltransferases - chemistry</subject><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>bilayer</subject><subject>Binding Sites</subject><subject>catalysis</subject><subject>Catalytic Domain</subject><subject>enzyme</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>lipids</subject><subject>MBOAT</subject><subject>membrane protein</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>simulation</subject><subject>Substrate Specificity</subject><issn>0969-2126</issn><issn>1878-4186</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1P5DAURS0EglngB9CgiIom4fkjji2qWcQuSCAaqC3HfgGPMsmsnYw0_36THZaS6jXnXt13CLmgUFCg8mZVpCEWDJgogBdAxQFZUFWpXFAlD8kCtNQ5o0yekB8prQCAlQDH5IQryWXJ-IIsn-1mE7r3bGoa3TBG22a285nfdXYdXObDFuM7dg4z62KfUjZ8YPb882X5mjUT0e7OyFFj24Tnn_eUvP26f717yJ9efj_eLZ9yx6tyyDWtrbWIvmmcE7KWumlUbUVNQbOacY6-UkJXXPNKoqUgvRJKe1WXTjUW-Cm52vf2aQgmuTCg-3B916EbDBMCVKUn6HoPbWL_Z8Q0mHVIDtvWdtiPyXAQHKpSqRmle_TfWxEbs4lhbePOUDCzXrMykxQz6zXAzaR3ylx-1o_1Gv1X4r_PCbjdAziZ2AaM89DZng9x3un78E39X8OLilM</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Ansell, T. Bertie</creator><creator>Healy, Megan</creator><creator>Coupland, Claire E.</creator><creator>Sansom, Mark S.P.</creator><creator>Siebold, Christian</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4870-5387</orcidid><orcidid>https://orcid.org/0000000348705387</orcidid></search><sort><creationdate>20240711</creationdate><title>Mapping structural and dynamic divergence across the MBOAT family</title><author>Ansell, T. Bertie ; Healy, Megan ; Coupland, Claire E. ; Sansom, Mark S.P. ; Siebold, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-91baaaeedffcc46b69ff8ba4b1092b233ed7849739376ea106d8489d8b5c8fa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acyltransferases - chemistry</topic><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>bilayer</topic><topic>Binding Sites</topic><topic>catalysis</topic><topic>Catalytic Domain</topic><topic>enzyme</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>lipids</topic><topic>MBOAT</topic><topic>membrane protein</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>simulation</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ansell, T. Bertie</creatorcontrib><creatorcontrib>Healy, Megan</creatorcontrib><creatorcontrib>Coupland, Claire E.</creatorcontrib><creatorcontrib>Sansom, Mark S.P.</creatorcontrib><creatorcontrib>Siebold, Christian</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ansell, T. Bertie</au><au>Healy, Megan</au><au>Coupland, Claire E.</au><au>Sansom, Mark S.P.</au><au>Siebold, Christian</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping structural and dynamic divergence across the MBOAT family</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2024-07-11</date><risdate>2024</risdate><volume>32</volume><issue>7</issue><spage>1011</spage><epage>1022.e3</epage><pages>1011-1022.e3</pages><issn>0969-2126</issn><issn>1878-4186</issn><eissn>1878-4186</eissn><abstract>Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain. Here, we combine comparative molecular dynamics (MD) simulations with bioinformatics to assess molecular and interactional divergence across the family. In simulations, MBOATs differentially distort the bilayer depending on their substrate type. Additionally, we identify lipid binding sites surrounding reactant gates in the surrounding membrane. Complementary bioinformatic analyses reveal a conserved role for re-entrant loop-2 in MBOAT fold stabilization and a key hydrogen bond bridging DGAT1 dimerization. Finally, we predict differences in MBOAT solvation and water gating properties. These data are pertinent to the design of MBOAT-specific inhibitors that encompass dynamic information within cellular mimetic environments. [Display omitted] •MBOAT subfamilies differentially distort the surrounding bilayer•Conserved residue pairs on re-entrant loop-2 stabilize the MBOAT fold•A conserved hydrogen bond interconnects the DGAT1 dimer•Solvent gating and hydration properties differ across the family Ansell et al. use molecular dynamics simulations and bioinformatic analyses to compare interactions across the MBOAT family. MBOAT subfamilies differentially interact with themselves, the surrounding membrane, and solvent environments. These data are pertinent to the design of MBOAT-specific inhibitors and family classification.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38636523</pmid><doi>10.1016/j.str.2024.03.014</doi><orcidid>https://orcid.org/0000-0003-4870-5387</orcidid><orcidid>https://orcid.org/0000000348705387</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-2126
ispartof Structure (London), 2024-07, Vol.32 (7), p.1011-1022.e3
issn 0969-2126
1878-4186
1878-4186
language eng
recordid cdi_osti_scitechconnect_2440879
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Acyltransferases - chemistry
Acyltransferases - genetics
Acyltransferases - metabolism
bilayer
Binding Sites
catalysis
Catalytic Domain
enzyme
Humans
Hydrogen Bonding
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
lipids
MBOAT
membrane protein
molecular dynamics
Molecular Dynamics Simulation
Protein Binding
Protein Multimerization
simulation
Substrate Specificity
title Mapping structural and dynamic divergence across the MBOAT family
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20structural%20and%20dynamic%20divergence%20across%20the%20MBOAT%20family&rft.jtitle=Structure%20(London)&rft.au=Ansell,%20T.%20Bertie&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2024-07-11&rft.volume=32&rft.issue=7&rft.spage=1011&rft.epage=1022.e3&rft.pages=1011-1022.e3&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2024.03.014&rft_dat=%3Cproquest_osti_%3E3043075889%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3043075889&rft_id=info:pmid/38636523&rft_els_id=S0969212624000960&rfr_iscdi=true