Mapping structural and dynamic divergence across the MBOAT family
Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2024-07, Vol.32 (7), p.1011-1022.e3 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1022.e3 |
---|---|
container_issue | 7 |
container_start_page | 1011 |
container_title | Structure (London) |
container_volume | 32 |
creator | Ansell, T. Bertie Healy, Megan Coupland, Claire E. Sansom, Mark S.P. Siebold, Christian |
description | Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain. Here, we combine comparative molecular dynamics (MD) simulations with bioinformatics to assess molecular and interactional divergence across the family. In simulations, MBOATs differentially distort the bilayer depending on their substrate type. Additionally, we identify lipid binding sites surrounding reactant gates in the surrounding membrane. Complementary bioinformatic analyses reveal a conserved role for re-entrant loop-2 in MBOAT fold stabilization and a key hydrogen bond bridging DGAT1 dimerization. Finally, we predict differences in MBOAT solvation and water gating properties. These data are pertinent to the design of MBOAT-specific inhibitors that encompass dynamic information within cellular mimetic environments.
[Display omitted]
•MBOAT subfamilies differentially distort the surrounding bilayer•Conserved residue pairs on re-entrant loop-2 stabilize the MBOAT fold•A conserved hydrogen bond interconnects the DGAT1 dimer•Solvent gating and hydration properties differ across the family
Ansell et al. use molecular dynamics simulations and bioinformatic analyses to compare interactions across the MBOAT family. MBOAT subfamilies differentially interact with themselves, the surrounding membrane, and solvent environments. These data are pertinent to the design of MBOAT-specific inhibitors and family classification. |
doi_str_mv | 10.1016/j.str.2024.03.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2440879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212624000960</els_id><sourcerecordid>3043075889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-91baaaeedffcc46b69ff8ba4b1092b233ed7849739376ea106d8489d8b5c8fa03</originalsourceid><addsrcrecordid>eNp9kD1P5DAURS0EglngB9CgiIom4fkjji2qWcQuSCAaqC3HfgGPMsmsnYw0_36THZaS6jXnXt13CLmgUFCg8mZVpCEWDJgogBdAxQFZUFWpXFAlD8kCtNQ5o0yekB8prQCAlQDH5IQryWXJ-IIsn-1mE7r3bGoa3TBG22a285nfdXYdXObDFuM7dg4z62KfUjZ8YPb882X5mjUT0e7OyFFj24Tnn_eUvP26f717yJ9efj_eLZ9yx6tyyDWtrbWIvmmcE7KWumlUbUVNQbOacY6-UkJXXPNKoqUgvRJKe1WXTjUW-Cm52vf2aQgmuTCg-3B916EbDBMCVKUn6HoPbWL_Z8Q0mHVIDtvWdtiPyXAQHKpSqRmle_TfWxEbs4lhbePOUDCzXrMykxQz6zXAzaR3ylx-1o_1Gv1X4r_PCbjdAziZ2AaM89DZng9x3un78E39X8OLilM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043075889</pqid></control><display><type>article</type><title>Mapping structural and dynamic divergence across the MBOAT family</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ansell, T. Bertie ; Healy, Megan ; Coupland, Claire E. ; Sansom, Mark S.P. ; Siebold, Christian</creator><creatorcontrib>Ansell, T. Bertie ; Healy, Megan ; Coupland, Claire E. ; Sansom, Mark S.P. ; Siebold, Christian ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain. Here, we combine comparative molecular dynamics (MD) simulations with bioinformatics to assess molecular and interactional divergence across the family. In simulations, MBOATs differentially distort the bilayer depending on their substrate type. Additionally, we identify lipid binding sites surrounding reactant gates in the surrounding membrane. Complementary bioinformatic analyses reveal a conserved role for re-entrant loop-2 in MBOAT fold stabilization and a key hydrogen bond bridging DGAT1 dimerization. Finally, we predict differences in MBOAT solvation and water gating properties. These data are pertinent to the design of MBOAT-specific inhibitors that encompass dynamic information within cellular mimetic environments.
[Display omitted]
•MBOAT subfamilies differentially distort the surrounding bilayer•Conserved residue pairs on re-entrant loop-2 stabilize the MBOAT fold•A conserved hydrogen bond interconnects the DGAT1 dimer•Solvent gating and hydration properties differ across the family
Ansell et al. use molecular dynamics simulations and bioinformatic analyses to compare interactions across the MBOAT family. MBOAT subfamilies differentially interact with themselves, the surrounding membrane, and solvent environments. These data are pertinent to the design of MBOAT-specific inhibitors and family classification.</description><identifier>ISSN: 0969-2126</identifier><identifier>ISSN: 1878-4186</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2024.03.014</identifier><identifier>PMID: 38636523</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acyltransferases - chemistry ; Acyltransferases - genetics ; Acyltransferases - metabolism ; bilayer ; Binding Sites ; catalysis ; Catalytic Domain ; enzyme ; Humans ; Hydrogen Bonding ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; lipids ; MBOAT ; membrane protein ; molecular dynamics ; Molecular Dynamics Simulation ; Protein Binding ; Protein Multimerization ; simulation ; Substrate Specificity</subject><ispartof>Structure (London), 2024-07, Vol.32 (7), p.1011-1022.e3</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c375t-91baaaeedffcc46b69ff8ba4b1092b233ed7849739376ea106d8489d8b5c8fa03</cites><orcidid>0000-0003-4870-5387 ; 0000000348705387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.str.2024.03.014$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38636523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2440879$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ansell, T. Bertie</creatorcontrib><creatorcontrib>Healy, Megan</creatorcontrib><creatorcontrib>Coupland, Claire E.</creatorcontrib><creatorcontrib>Sansom, Mark S.P.</creatorcontrib><creatorcontrib>Siebold, Christian</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Mapping structural and dynamic divergence across the MBOAT family</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain. Here, we combine comparative molecular dynamics (MD) simulations with bioinformatics to assess molecular and interactional divergence across the family. In simulations, MBOATs differentially distort the bilayer depending on their substrate type. Additionally, we identify lipid binding sites surrounding reactant gates in the surrounding membrane. Complementary bioinformatic analyses reveal a conserved role for re-entrant loop-2 in MBOAT fold stabilization and a key hydrogen bond bridging DGAT1 dimerization. Finally, we predict differences in MBOAT solvation and water gating properties. These data are pertinent to the design of MBOAT-specific inhibitors that encompass dynamic information within cellular mimetic environments.
[Display omitted]
•MBOAT subfamilies differentially distort the surrounding bilayer•Conserved residue pairs on re-entrant loop-2 stabilize the MBOAT fold•A conserved hydrogen bond interconnects the DGAT1 dimer•Solvent gating and hydration properties differ across the family
Ansell et al. use molecular dynamics simulations and bioinformatic analyses to compare interactions across the MBOAT family. MBOAT subfamilies differentially interact with themselves, the surrounding membrane, and solvent environments. These data are pertinent to the design of MBOAT-specific inhibitors and family classification.</description><subject>Acyltransferases - chemistry</subject><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>bilayer</subject><subject>Binding Sites</subject><subject>catalysis</subject><subject>Catalytic Domain</subject><subject>enzyme</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>lipids</subject><subject>MBOAT</subject><subject>membrane protein</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>simulation</subject><subject>Substrate Specificity</subject><issn>0969-2126</issn><issn>1878-4186</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1P5DAURS0EglngB9CgiIom4fkjji2qWcQuSCAaqC3HfgGPMsmsnYw0_36THZaS6jXnXt13CLmgUFCg8mZVpCEWDJgogBdAxQFZUFWpXFAlD8kCtNQ5o0yekB8prQCAlQDH5IQryWXJ-IIsn-1mE7r3bGoa3TBG22a285nfdXYdXObDFuM7dg4z62KfUjZ8YPb882X5mjUT0e7OyFFj24Tnn_eUvP26f717yJ9efj_eLZ9yx6tyyDWtrbWIvmmcE7KWumlUbUVNQbOacY6-UkJXXPNKoqUgvRJKe1WXTjUW-Cm52vf2aQgmuTCg-3B916EbDBMCVKUn6HoPbWL_Z8Q0mHVIDtvWdtiPyXAQHKpSqRmle_TfWxEbs4lhbePOUDCzXrMykxQz6zXAzaR3ylx-1o_1Gv1X4r_PCbjdAziZ2AaM89DZng9x3un78E39X8OLilM</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Ansell, T. Bertie</creator><creator>Healy, Megan</creator><creator>Coupland, Claire E.</creator><creator>Sansom, Mark S.P.</creator><creator>Siebold, Christian</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4870-5387</orcidid><orcidid>https://orcid.org/0000000348705387</orcidid></search><sort><creationdate>20240711</creationdate><title>Mapping structural and dynamic divergence across the MBOAT family</title><author>Ansell, T. Bertie ; Healy, Megan ; Coupland, Claire E. ; Sansom, Mark S.P. ; Siebold, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-91baaaeedffcc46b69ff8ba4b1092b233ed7849739376ea106d8489d8b5c8fa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acyltransferases - chemistry</topic><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>bilayer</topic><topic>Binding Sites</topic><topic>catalysis</topic><topic>Catalytic Domain</topic><topic>enzyme</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>lipids</topic><topic>MBOAT</topic><topic>membrane protein</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>simulation</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ansell, T. Bertie</creatorcontrib><creatorcontrib>Healy, Megan</creatorcontrib><creatorcontrib>Coupland, Claire E.</creatorcontrib><creatorcontrib>Sansom, Mark S.P.</creatorcontrib><creatorcontrib>Siebold, Christian</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ansell, T. Bertie</au><au>Healy, Megan</au><au>Coupland, Claire E.</au><au>Sansom, Mark S.P.</au><au>Siebold, Christian</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping structural and dynamic divergence across the MBOAT family</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2024-07-11</date><risdate>2024</risdate><volume>32</volume><issue>7</issue><spage>1011</spage><epage>1022.e3</epage><pages>1011-1022.e3</pages><issn>0969-2126</issn><issn>1878-4186</issn><eissn>1878-4186</eissn><abstract>Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain. Here, we combine comparative molecular dynamics (MD) simulations with bioinformatics to assess molecular and interactional divergence across the family. In simulations, MBOATs differentially distort the bilayer depending on their substrate type. Additionally, we identify lipid binding sites surrounding reactant gates in the surrounding membrane. Complementary bioinformatic analyses reveal a conserved role for re-entrant loop-2 in MBOAT fold stabilization and a key hydrogen bond bridging DGAT1 dimerization. Finally, we predict differences in MBOAT solvation and water gating properties. These data are pertinent to the design of MBOAT-specific inhibitors that encompass dynamic information within cellular mimetic environments.
[Display omitted]
•MBOAT subfamilies differentially distort the surrounding bilayer•Conserved residue pairs on re-entrant loop-2 stabilize the MBOAT fold•A conserved hydrogen bond interconnects the DGAT1 dimer•Solvent gating and hydration properties differ across the family
Ansell et al. use molecular dynamics simulations and bioinformatic analyses to compare interactions across the MBOAT family. MBOAT subfamilies differentially interact with themselves, the surrounding membrane, and solvent environments. These data are pertinent to the design of MBOAT-specific inhibitors and family classification.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38636523</pmid><doi>10.1016/j.str.2024.03.014</doi><orcidid>https://orcid.org/0000-0003-4870-5387</orcidid><orcidid>https://orcid.org/0000000348705387</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 2024-07, Vol.32 (7), p.1011-1022.e3 |
issn | 0969-2126 1878-4186 1878-4186 |
language | eng |
recordid | cdi_osti_scitechconnect_2440879 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Acyltransferases - chemistry Acyltransferases - genetics Acyltransferases - metabolism bilayer Binding Sites catalysis Catalytic Domain enzyme Humans Hydrogen Bonding INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Lipid Bilayers - chemistry Lipid Bilayers - metabolism lipids MBOAT membrane protein molecular dynamics Molecular Dynamics Simulation Protein Binding Protein Multimerization simulation Substrate Specificity |
title | Mapping structural and dynamic divergence across the MBOAT family |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20structural%20and%20dynamic%20divergence%20across%20the%20MBOAT%20family&rft.jtitle=Structure%20(London)&rft.au=Ansell,%20T.%20Bertie&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2024-07-11&rft.volume=32&rft.issue=7&rft.spage=1011&rft.epage=1022.e3&rft.pages=1011-1022.e3&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2024.03.014&rft_dat=%3Cproquest_osti_%3E3043075889%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3043075889&rft_id=info:pmid/38636523&rft_els_id=S0969212624000960&rfr_iscdi=true |