Microstructural Evolution of Tantalum During Deformation and Subsequent Annealing
Microstructure-aware models are necessary to predict the behavior of material based on process knowledge or to extrapolate mechanical properties of materials to environmental conditions which are not easily reproduced in the laboratory, e.g. , nuclear reactor environments. Elemental Ta provides a re...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2024-08, Vol.55 (8), p.3077-3091 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3091 |
---|---|
container_issue | 8 |
container_start_page | 3077 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 55 |
creator | Brown, Donald W. Anghel, Veronica Clausen, Bjorn Pokharel, Reeju Savage, Daniel J. Vogel, Sven C. |
description | Microstructure-aware models are necessary to predict the behavior of material based on process knowledge or to extrapolate mechanical properties of materials to environmental conditions which are not easily reproduced in the laboratory,
e.g.
, nuclear reactor environments. Elemental Ta provides a relatively simple BCC system in which to develop a microstructural understanding of deformation processes which can then be applied to more complicated BCC alloys.
In situ
neutron diffraction during compressive deformation and subsequent heat treatment have been used to monitor the evolution of microstructural features in Ta throughout simulated processing steps. Crystallographic texture and dislocation density are determined as a function of first plastic strain, then temperature. Lattice strains are determined and attributed to stresses at macroscopic, grain and dislocation length scales. The increase of the dislocation density through deformation and subsequent recovery during heat treatment is monitored through the changing diffraction line profile. Also, randomization of the texture is used as a signature of recrystallization. The recovery of dislocations through annihilation is not observed to depend on the initial dislocation density in the range studied here. In contrast, recrystallization is observed to depend strongly on the initially dislocation density. |
doi_str_mv | 10.1007/s11661-024-07459-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2440679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076102596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-91a9120a094545d2ba411050c68da446ac56bf16024bc1b3216bb1894f544bad3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKui19Vz0iRdLsc2P2Ai4rwOSdpqR9fOJBX896ar4J1XJ3Ce8_LkJeQS4QYB8luPKASmQFkKOeMylUdkgpxlKUoGx_ENeZZyQbNTcub9FgBQZmJCXp5q6zofXG9D73STrL66pg911yZdlWx0G3TT75Jl7-r2PVmWVed2-rDWbZG89saXn33ZhmTetqVuInROTird-PLid07J291qs3hI18_3j4v5OrU0x5BK1BIpaJCMM15QoxkicLBiVmjGhLZcmApF_JKxaDKKwhicSVZxxowusim5GnOjfa28rUNpP2wXNWxQlDEQuYzQ9QjtXRc9fVDbrndt9FIZ5AKBcikiRUdqqMK7slJ7V--0-1YIauhXjf2qKKMO_aohOhuP_H7opnR_0f9c_QBr1Xz1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076102596</pqid></control><display><type>article</type><title>Microstructural Evolution of Tantalum During Deformation and Subsequent Annealing</title><source>SpringerLink Journals - AutoHoldings</source><creator>Brown, Donald W. ; Anghel, Veronica ; Clausen, Bjorn ; Pokharel, Reeju ; Savage, Daniel J. ; Vogel, Sven C.</creator><creatorcontrib>Brown, Donald W. ; Anghel, Veronica ; Clausen, Bjorn ; Pokharel, Reeju ; Savage, Daniel J. ; Vogel, Sven C. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Microstructure-aware models are necessary to predict the behavior of material based on process knowledge or to extrapolate mechanical properties of materials to environmental conditions which are not easily reproduced in the laboratory,
e.g.
, nuclear reactor environments. Elemental Ta provides a relatively simple BCC system in which to develop a microstructural understanding of deformation processes which can then be applied to more complicated BCC alloys.
In situ
neutron diffraction during compressive deformation and subsequent heat treatment have been used to monitor the evolution of microstructural features in Ta throughout simulated processing steps. Crystallographic texture and dislocation density are determined as a function of first plastic strain, then temperature. Lattice strains are determined and attributed to stresses at macroscopic, grain and dislocation length scales. The increase of the dislocation density through deformation and subsequent recovery during heat treatment is monitored through the changing diffraction line profile. Also, randomization of the texture is used as a signature of recrystallization. The recovery of dislocations through annihilation is not observed to depend on the initial dislocation density in the range studied here. In contrast, recrystallization is observed to depend strongly on the initially dislocation density.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-024-07459-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>BCC metals ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal dislocations ; Crystallography ; Deformation ; Dislocation density ; Evolution ; Heat treating ; Heat treatment ; Lattice strain ; Material properties ; Materials Science ; Mechanical properties ; Metallic Materials ; Microstructure ; Nanotechnology ; Neutron diffraction ; Nuclear reactors ; Original Research Article ; Plastic deformation ; Recrystallization ; Structural Materials ; Surfaces and Interfaces ; Tantalum ; Texture ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2024-08, Vol.55 (8), p.3077-3091</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c271t-91a9120a094545d2ba411050c68da446ac56bf16024bc1b3216bb1894f544bad3</cites><orcidid>0000000316239270 ; 000000033906846X ; 0000000199732030 ; 0000000320490361 ; 0000000345658212 ; 0000000205636142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-024-07459-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-024-07459-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2440679$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Donald W.</creatorcontrib><creatorcontrib>Anghel, Veronica</creatorcontrib><creatorcontrib>Clausen, Bjorn</creatorcontrib><creatorcontrib>Pokharel, Reeju</creatorcontrib><creatorcontrib>Savage, Daniel J.</creatorcontrib><creatorcontrib>Vogel, Sven C.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Microstructural Evolution of Tantalum During Deformation and Subsequent Annealing</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Microstructure-aware models are necessary to predict the behavior of material based on process knowledge or to extrapolate mechanical properties of materials to environmental conditions which are not easily reproduced in the laboratory,
e.g.
, nuclear reactor environments. Elemental Ta provides a relatively simple BCC system in which to develop a microstructural understanding of deformation processes which can then be applied to more complicated BCC alloys.
In situ
neutron diffraction during compressive deformation and subsequent heat treatment have been used to monitor the evolution of microstructural features in Ta throughout simulated processing steps. Crystallographic texture and dislocation density are determined as a function of first plastic strain, then temperature. Lattice strains are determined and attributed to stresses at macroscopic, grain and dislocation length scales. The increase of the dislocation density through deformation and subsequent recovery during heat treatment is monitored through the changing diffraction line profile. Also, randomization of the texture is used as a signature of recrystallization. The recovery of dislocations through annihilation is not observed to depend on the initial dislocation density in the range studied here. In contrast, recrystallization is observed to depend strongly on the initially dislocation density.</description><subject>BCC metals</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal dislocations</subject><subject>Crystallography</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>Evolution</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Lattice strain</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Neutron diffraction</subject><subject>Nuclear reactors</subject><subject>Original Research Article</subject><subject>Plastic deformation</subject><subject>Recrystallization</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Tantalum</subject><subject>Texture</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKui19Vz0iRdLsc2P2Ai4rwOSdpqR9fOJBX896ar4J1XJ3Ce8_LkJeQS4QYB8luPKASmQFkKOeMylUdkgpxlKUoGx_ENeZZyQbNTcub9FgBQZmJCXp5q6zofXG9D73STrL66pg911yZdlWx0G3TT75Jl7-r2PVmWVed2-rDWbZG89saXn33ZhmTetqVuInROTird-PLid07J291qs3hI18_3j4v5OrU0x5BK1BIpaJCMM15QoxkicLBiVmjGhLZcmApF_JKxaDKKwhicSVZxxowusim5GnOjfa28rUNpP2wXNWxQlDEQuYzQ9QjtXRc9fVDbrndt9FIZ5AKBcikiRUdqqMK7slJ7V--0-1YIauhXjf2qKKMO_aohOhuP_H7opnR_0f9c_QBr1Xz1</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Brown, Donald W.</creator><creator>Anghel, Veronica</creator><creator>Clausen, Bjorn</creator><creator>Pokharel, Reeju</creator><creator>Savage, Daniel J.</creator><creator>Vogel, Sven C.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000316239270</orcidid><orcidid>https://orcid.org/000000033906846X</orcidid><orcidid>https://orcid.org/0000000199732030</orcidid><orcidid>https://orcid.org/0000000320490361</orcidid><orcidid>https://orcid.org/0000000345658212</orcidid><orcidid>https://orcid.org/0000000205636142</orcidid></search><sort><creationdate>20240801</creationdate><title>Microstructural Evolution of Tantalum During Deformation and Subsequent Annealing</title><author>Brown, Donald W. ; Anghel, Veronica ; Clausen, Bjorn ; Pokharel, Reeju ; Savage, Daniel J. ; Vogel, Sven C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-91a9120a094545d2ba411050c68da446ac56bf16024bc1b3216bb1894f544bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>BCC metals</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal dislocations</topic><topic>Crystallography</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>Evolution</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Lattice strain</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Neutron diffraction</topic><topic>Nuclear reactors</topic><topic>Original Research Article</topic><topic>Plastic deformation</topic><topic>Recrystallization</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Tantalum</topic><topic>Texture</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Donald W.</creatorcontrib><creatorcontrib>Anghel, Veronica</creatorcontrib><creatorcontrib>Clausen, Bjorn</creatorcontrib><creatorcontrib>Pokharel, Reeju</creatorcontrib><creatorcontrib>Savage, Daniel J.</creatorcontrib><creatorcontrib>Vogel, Sven C.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Donald W.</au><au>Anghel, Veronica</au><au>Clausen, Bjorn</au><au>Pokharel, Reeju</au><au>Savage, Daniel J.</au><au>Vogel, Sven C.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural Evolution of Tantalum During Deformation and Subsequent Annealing</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>55</volume><issue>8</issue><spage>3077</spage><epage>3091</epage><pages>3077-3091</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Microstructure-aware models are necessary to predict the behavior of material based on process knowledge or to extrapolate mechanical properties of materials to environmental conditions which are not easily reproduced in the laboratory,
e.g.
, nuclear reactor environments. Elemental Ta provides a relatively simple BCC system in which to develop a microstructural understanding of deformation processes which can then be applied to more complicated BCC alloys.
In situ
neutron diffraction during compressive deformation and subsequent heat treatment have been used to monitor the evolution of microstructural features in Ta throughout simulated processing steps. Crystallographic texture and dislocation density are determined as a function of first plastic strain, then temperature. Lattice strains are determined and attributed to stresses at macroscopic, grain and dislocation length scales. The increase of the dislocation density through deformation and subsequent recovery during heat treatment is monitored through the changing diffraction line profile. Also, randomization of the texture is used as a signature of recrystallization. The recovery of dislocations through annihilation is not observed to depend on the initial dislocation density in the range studied here. In contrast, recrystallization is observed to depend strongly on the initially dislocation density.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-024-07459-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000000316239270</orcidid><orcidid>https://orcid.org/000000033906846X</orcidid><orcidid>https://orcid.org/0000000199732030</orcidid><orcidid>https://orcid.org/0000000320490361</orcidid><orcidid>https://orcid.org/0000000345658212</orcidid><orcidid>https://orcid.org/0000000205636142</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2024-08, Vol.55 (8), p.3077-3091 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_osti_scitechconnect_2440679 |
source | SpringerLink Journals - AutoHoldings |
subjects | BCC metals Characterization and Evaluation of Materials Chemistry and Materials Science Crystal dislocations Crystallography Deformation Dislocation density Evolution Heat treating Heat treatment Lattice strain Material properties Materials Science Mechanical properties Metallic Materials Microstructure Nanotechnology Neutron diffraction Nuclear reactors Original Research Article Plastic deformation Recrystallization Structural Materials Surfaces and Interfaces Tantalum Texture Thin Films |
title | Microstructural Evolution of Tantalum During Deformation and Subsequent Annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20Evolution%20of%20Tantalum%20During%20Deformation%20and%20Subsequent%20Annealing&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Brown,%20Donald%20W.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-08-01&rft.volume=55&rft.issue=8&rft.spage=3077&rft.epage=3091&rft.pages=3077-3091&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-024-07459-9&rft_dat=%3Cproquest_osti_%3E3076102596%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076102596&rft_id=info:pmid/&rfr_iscdi=true |