Self-Driving Laboratories for Chemistry and Materials Science
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through the automation of experimental workflows, along with autonomous experimental planning, SDLs hold the potential to greatly accelerate research in chemistry and materials discovery. This review provid...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2024-08, Vol.124 (16), p.9633-9732 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9732 |
---|---|
container_issue | 16 |
container_start_page | 9633 |
container_title | Chemical reviews |
container_volume | 124 |
creator | Tom, Gary Schmid, Stefan P. Baird, Sterling G. Cao, Yang Darvish, Kourosh Hao, Han Lo, Stanley Pablo-García, Sergio Rajaonson, Ella M. Skreta, Marta Yoshikawa, Naruki Corapi, Samantha Akkoc, Gun Deniz Strieth-Kalthoff, Felix Seifrid, Martin Aspuru-Guzik, Alán |
description | Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through the automation of experimental workflows, along with autonomous experimental planning, SDLs hold the potential to greatly accelerate research in chemistry and materials discovery. This review provides an in-depth analysis of the state-of-the-art in SDL technology, its applications across various scientific disciplines, and the potential implications for research and industry. This review additionally provides an overview of the enabling technologies for SDLs, including their hardware, software, and integration with laboratory infrastructure. Most importantly, this review explores the diverse range of scientific domains where SDLs have made significant contributions, from drug discovery and materials science to genomics and chemistry. We provide a comprehensive review of existing real-world examples of SDLs, their different levels of automation, and the challenges and limitations associated with each domain. |
doi_str_mv | 10.1021/acs.chemrev.4c00055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2438394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092867506</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-5f5109d59523e59b6e4f4ae038bd2291113e708684cf11d4b6f9a9da18e7821e3</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EouXxBUgoYsUmrR-xEy9YoPKUilgU1pbjTKirNC52Wql_j0sDS1iNZnTundFchC4IHhFMyVibMDJzWHrYjDKDMeb8AA0JpzgVhcSHaBhnMqVC8AE6CWHxjdD8GA2YJCynUgzRzQyaOr3zdmPbj2SqS-d157yFkNTOJ5Pob0Pnt4luq-RFd-CtbkIyMxZaA2foqI4tnPf1FL0_3L9NntLp6-Pz5HaaasZwl_KaEywrLjllwGUpIKszDZgVZUWpJIQwyHEhiszUhFRZKWqpZaVJAXlBCbBTdLX3daGzKhjbgZkb17ZgOkUzVjCZReh6D628-1xD6FQ83UDT6BbcOihGOMsZo5T-j2JJC5FzLCLK9qjxLgQPtVp5u9R-qwhWuxxUzEH1Oag-h6i67BesyyVUv5qfx0dgvAd26oVb-zb-70_LL7qklDo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092867506</pqid></control><display><type>article</type><title>Self-Driving Laboratories for Chemistry and Materials Science</title><source>ACS Publications</source><creator>Tom, Gary ; Schmid, Stefan P. ; Baird, Sterling G. ; Cao, Yang ; Darvish, Kourosh ; Hao, Han ; Lo, Stanley ; Pablo-García, Sergio ; Rajaonson, Ella M. ; Skreta, Marta ; Yoshikawa, Naruki ; Corapi, Samantha ; Akkoc, Gun Deniz ; Strieth-Kalthoff, Felix ; Seifrid, Martin ; Aspuru-Guzik, Alán</creator><creatorcontrib>Tom, Gary ; Schmid, Stefan P. ; Baird, Sterling G. ; Cao, Yang ; Darvish, Kourosh ; Hao, Han ; Lo, Stanley ; Pablo-García, Sergio ; Rajaonson, Ella M. ; Skreta, Marta ; Yoshikawa, Naruki ; Corapi, Samantha ; Akkoc, Gun Deniz ; Strieth-Kalthoff, Felix ; Seifrid, Martin ; Aspuru-Guzik, Alán</creatorcontrib><description>Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through the automation of experimental workflows, along with autonomous experimental planning, SDLs hold the potential to greatly accelerate research in chemistry and materials discovery. This review provides an in-depth analysis of the state-of-the-art in SDL technology, its applications across various scientific disciplines, and the potential implications for research and industry. This review additionally provides an overview of the enabling technologies for SDLs, including their hardware, software, and integration with laboratory infrastructure. Most importantly, this review explores the diverse range of scientific domains where SDLs have made significant contributions, from drug discovery and materials science to genomics and chemistry. We provide a comprehensive review of existing real-world examples of SDLs, their different levels of automation, and the challenges and limitations associated with each domain.</description><identifier>ISSN: 0009-2665</identifier><identifier>ISSN: 1520-6890</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.4c00055</identifier><identifier>PMID: 39137296</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>automation ; chemistry ; computer software ; domain ; drugs ; industry ; infrastructure</subject><ispartof>Chemical reviews, 2024-08, Vol.124 (16), p.9633-9732</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a330t-5f5109d59523e59b6e4f4ae038bd2291113e708684cf11d4b6f9a9da18e7821e3</cites><orcidid>0000-0003-1546-8709 ; 0000-0003-0278-5318 ; 0000-0002-8277-4434 ; 0000-0001-5238-0058 ; 0000-0001-8636-7919 ; 0000-0002-0965-0208 ; 0000-0002-8470-6515 ; 0000000284706515 ; 0000000302785318 ; 0000000186367919 ; 0000000282774434 ; 0000000315468709 ; 0000000209650208 ; 0000000152380058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.4c00055$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.4c00055$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39137296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2438394$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tom, Gary</creatorcontrib><creatorcontrib>Schmid, Stefan P.</creatorcontrib><creatorcontrib>Baird, Sterling G.</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Darvish, Kourosh</creatorcontrib><creatorcontrib>Hao, Han</creatorcontrib><creatorcontrib>Lo, Stanley</creatorcontrib><creatorcontrib>Pablo-García, Sergio</creatorcontrib><creatorcontrib>Rajaonson, Ella M.</creatorcontrib><creatorcontrib>Skreta, Marta</creatorcontrib><creatorcontrib>Yoshikawa, Naruki</creatorcontrib><creatorcontrib>Corapi, Samantha</creatorcontrib><creatorcontrib>Akkoc, Gun Deniz</creatorcontrib><creatorcontrib>Strieth-Kalthoff, Felix</creatorcontrib><creatorcontrib>Seifrid, Martin</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><title>Self-Driving Laboratories for Chemistry and Materials Science</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through the automation of experimental workflows, along with autonomous experimental planning, SDLs hold the potential to greatly accelerate research in chemistry and materials discovery. This review provides an in-depth analysis of the state-of-the-art in SDL technology, its applications across various scientific disciplines, and the potential implications for research and industry. This review additionally provides an overview of the enabling technologies for SDLs, including their hardware, software, and integration with laboratory infrastructure. Most importantly, this review explores the diverse range of scientific domains where SDLs have made significant contributions, from drug discovery and materials science to genomics and chemistry. We provide a comprehensive review of existing real-world examples of SDLs, their different levels of automation, and the challenges and limitations associated with each domain.</description><subject>automation</subject><subject>chemistry</subject><subject>computer software</subject><subject>domain</subject><subject>drugs</subject><subject>industry</subject><subject>infrastructure</subject><issn>0009-2665</issn><issn>1520-6890</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRS0EouXxBUgoYsUmrR-xEy9YoPKUilgU1pbjTKirNC52Wql_j0sDS1iNZnTundFchC4IHhFMyVibMDJzWHrYjDKDMeb8AA0JpzgVhcSHaBhnMqVC8AE6CWHxjdD8GA2YJCynUgzRzQyaOr3zdmPbj2SqS-d157yFkNTOJ5Pob0Pnt4luq-RFd-CtbkIyMxZaA2foqI4tnPf1FL0_3L9NntLp6-Pz5HaaasZwl_KaEywrLjllwGUpIKszDZgVZUWpJIQwyHEhiszUhFRZKWqpZaVJAXlBCbBTdLX3daGzKhjbgZkb17ZgOkUzVjCZReh6D628-1xD6FQ83UDT6BbcOihGOMsZo5T-j2JJC5FzLCLK9qjxLgQPtVp5u9R-qwhWuxxUzEH1Oag-h6i67BesyyVUv5qfx0dgvAd26oVb-zb-70_LL7qklDo</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Tom, Gary</creator><creator>Schmid, Stefan P.</creator><creator>Baird, Sterling G.</creator><creator>Cao, Yang</creator><creator>Darvish, Kourosh</creator><creator>Hao, Han</creator><creator>Lo, Stanley</creator><creator>Pablo-García, Sergio</creator><creator>Rajaonson, Ella M.</creator><creator>Skreta, Marta</creator><creator>Yoshikawa, Naruki</creator><creator>Corapi, Samantha</creator><creator>Akkoc, Gun Deniz</creator><creator>Strieth-Kalthoff, Felix</creator><creator>Seifrid, Martin</creator><creator>Aspuru-Guzik, Alán</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1546-8709</orcidid><orcidid>https://orcid.org/0000-0003-0278-5318</orcidid><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0001-5238-0058</orcidid><orcidid>https://orcid.org/0000-0001-8636-7919</orcidid><orcidid>https://orcid.org/0000-0002-0965-0208</orcidid><orcidid>https://orcid.org/0000-0002-8470-6515</orcidid><orcidid>https://orcid.org/0000000284706515</orcidid><orcidid>https://orcid.org/0000000302785318</orcidid><orcidid>https://orcid.org/0000000186367919</orcidid><orcidid>https://orcid.org/0000000282774434</orcidid><orcidid>https://orcid.org/0000000315468709</orcidid><orcidid>https://orcid.org/0000000209650208</orcidid><orcidid>https://orcid.org/0000000152380058</orcidid></search><sort><creationdate>20240813</creationdate><title>Self-Driving Laboratories for Chemistry and Materials Science</title><author>Tom, Gary ; Schmid, Stefan P. ; Baird, Sterling G. ; Cao, Yang ; Darvish, Kourosh ; Hao, Han ; Lo, Stanley ; Pablo-García, Sergio ; Rajaonson, Ella M. ; Skreta, Marta ; Yoshikawa, Naruki ; Corapi, Samantha ; Akkoc, Gun Deniz ; Strieth-Kalthoff, Felix ; Seifrid, Martin ; Aspuru-Guzik, Alán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-5f5109d59523e59b6e4f4ae038bd2291113e708684cf11d4b6f9a9da18e7821e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>automation</topic><topic>chemistry</topic><topic>computer software</topic><topic>domain</topic><topic>drugs</topic><topic>industry</topic><topic>infrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tom, Gary</creatorcontrib><creatorcontrib>Schmid, Stefan P.</creatorcontrib><creatorcontrib>Baird, Sterling G.</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Darvish, Kourosh</creatorcontrib><creatorcontrib>Hao, Han</creatorcontrib><creatorcontrib>Lo, Stanley</creatorcontrib><creatorcontrib>Pablo-García, Sergio</creatorcontrib><creatorcontrib>Rajaonson, Ella M.</creatorcontrib><creatorcontrib>Skreta, Marta</creatorcontrib><creatorcontrib>Yoshikawa, Naruki</creatorcontrib><creatorcontrib>Corapi, Samantha</creatorcontrib><creatorcontrib>Akkoc, Gun Deniz</creatorcontrib><creatorcontrib>Strieth-Kalthoff, Felix</creatorcontrib><creatorcontrib>Seifrid, Martin</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tom, Gary</au><au>Schmid, Stefan P.</au><au>Baird, Sterling G.</au><au>Cao, Yang</au><au>Darvish, Kourosh</au><au>Hao, Han</au><au>Lo, Stanley</au><au>Pablo-García, Sergio</au><au>Rajaonson, Ella M.</au><au>Skreta, Marta</au><au>Yoshikawa, Naruki</au><au>Corapi, Samantha</au><au>Akkoc, Gun Deniz</au><au>Strieth-Kalthoff, Felix</au><au>Seifrid, Martin</au><au>Aspuru-Guzik, Alán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Driving Laboratories for Chemistry and Materials Science</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2024-08-13</date><risdate>2024</risdate><volume>124</volume><issue>16</issue><spage>9633</spage><epage>9732</epage><pages>9633-9732</pages><issn>0009-2665</issn><issn>1520-6890</issn><eissn>1520-6890</eissn><abstract>Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through the automation of experimental workflows, along with autonomous experimental planning, SDLs hold the potential to greatly accelerate research in chemistry and materials discovery. This review provides an in-depth analysis of the state-of-the-art in SDL technology, its applications across various scientific disciplines, and the potential implications for research and industry. This review additionally provides an overview of the enabling technologies for SDLs, including their hardware, software, and integration with laboratory infrastructure. Most importantly, this review explores the diverse range of scientific domains where SDLs have made significant contributions, from drug discovery and materials science to genomics and chemistry. We provide a comprehensive review of existing real-world examples of SDLs, their different levels of automation, and the challenges and limitations associated with each domain.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39137296</pmid><doi>10.1021/acs.chemrev.4c00055</doi><tpages>100</tpages><orcidid>https://orcid.org/0000-0003-1546-8709</orcidid><orcidid>https://orcid.org/0000-0003-0278-5318</orcidid><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0001-5238-0058</orcidid><orcidid>https://orcid.org/0000-0001-8636-7919</orcidid><orcidid>https://orcid.org/0000-0002-0965-0208</orcidid><orcidid>https://orcid.org/0000-0002-8470-6515</orcidid><orcidid>https://orcid.org/0000000284706515</orcidid><orcidid>https://orcid.org/0000000302785318</orcidid><orcidid>https://orcid.org/0000000186367919</orcidid><orcidid>https://orcid.org/0000000282774434</orcidid><orcidid>https://orcid.org/0000000315468709</orcidid><orcidid>https://orcid.org/0000000209650208</orcidid><orcidid>https://orcid.org/0000000152380058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2024-08, Vol.124 (16), p.9633-9732 |
issn | 0009-2665 1520-6890 1520-6890 |
language | eng |
recordid | cdi_osti_scitechconnect_2438394 |
source | ACS Publications |
subjects | automation chemistry computer software domain drugs industry infrastructure |
title | Self-Driving Laboratories for Chemistry and Materials Science |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Driving%20Laboratories%20for%20Chemistry%20and%20Materials%20Science&rft.jtitle=Chemical%20reviews&rft.au=Tom,%20Gary&rft.date=2024-08-13&rft.volume=124&rft.issue=16&rft.spage=9633&rft.epage=9732&rft.pages=9633-9732&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.4c00055&rft_dat=%3Cproquest_osti_%3E3092867506%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092867506&rft_id=info:pmid/39137296&rfr_iscdi=true |