An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries

The anionic redox reaction (ARR) has become a hot topic in battery research due to its ability to provide high energy density. Nevertheless, there are still many issues in Na-based layered oxides with the ARR, such as large voltage hysteresis, lattice oxygen loss, irreversible structural changes, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024, Vol.12 (23), p.13841-13851
Hauptverfasser: Ming-Hui, Cao, Ren-Yan, Li, Qing-Wen, Sun, Cui, Miao, Ze-Wei Guo, Lu, Ma, Shadike, Zulipiya, Zheng-Wen, Fu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13851
container_issue 23
container_start_page 13841
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Ming-Hui, Cao
Ren-Yan, Li
Qing-Wen, Sun
Cui, Miao
Ze-Wei Guo
Lu, Ma
Shadike, Zulipiya
Zheng-Wen, Fu
description The anionic redox reaction (ARR) has become a hot topic in battery research due to its ability to provide high energy density. Nevertheless, there are still many issues in Na-based layered oxides with the ARR, such as large voltage hysteresis, lattice oxygen loss, irreversible structural changes, and cation migration in the TM layer, resulting in structural collapse and poor electrochemical performance. Herein, a series of Na2/3[Fe1/3MgxMn2/3−x]O2 cathodes are synthesized using a traditional solid-state reaction method. The effectiveness of Mg substitution amounts and site occupancy in regulating the reversibility of the ARR has been explored using various experimental techniques. Surprisingly, the well-designed Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 exhibits an extremely high initial reversible capacity of ∼253.21 mA h g−1, equivalent to ∼0.94 e− transfer, which is contributed by both cationic and anionic redox reactions as confirmed by hard X-ray absorption spectroscopy (hXAS) and soft X-ray absorption spectroscopy (sXAS) analyses. In addition, the improved cycling and high-rate performance of the P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 are achieved by a well-maintained crystal structure and the highly reversible anionic redox reaction of O2−/On−. These in-depth studies provide crucial knowledge for the development and understanding of cathode materials with a highly reversible ARR for low-cost and high-energy sodium-ion batteries.
doi_str_mv 10.1039/d4ta00380b
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2437740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066298316</sourcerecordid><originalsourceid>FETCH-LOGICAL-o210t-861b7876cde35dcf51465f7628c3f04503c36b169d01377b60574492f83da0f73</originalsourceid><addsrcrecordid>eNo9T8tOwzAQtBBIVKUXvsCCc8j6Eds5VhUFpD44lBNCUWI7Tao2LrEj2r_HUhF72BlpZlazCN0TeCLA8tTwUAIwBdUVGlHIIJE8F9f_XKlbNPF-B3EUgMjzETpNO7wq080y8W2weLnFfqh8aMMQrMHvNFmVNGWfc0tSttySlNBlJ-P-WlOsy9A4Y_FPGxpsT6G3B7s_46bdNlE7lroNZ1y7Hntn2uGQtK7DVRmC7Vvr79BNXe69nfzhGH3Mnzez12SxfnmbTReJowRCogSppJJCG8syo-uMcJHVUlClWQ08A6aZqIjIDRAmZSUgk5zntFbMlFBLNkYPl7suflX42MnqRruuszoUlMcMh2h6vJiOvfserA_Fzg19F3sVDISguWJEsF8EN2bd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066298316</pqid></control><display><type>article</type><title>An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Ming-Hui, Cao ; Ren-Yan, Li ; Qing-Wen, Sun ; Cui, Miao ; Ze-Wei Guo ; Lu, Ma ; Shadike, Zulipiya ; Zheng-Wen, Fu</creator><creatorcontrib>Ming-Hui, Cao ; Ren-Yan, Li ; Qing-Wen, Sun ; Cui, Miao ; Ze-Wei Guo ; Lu, Ma ; Shadike, Zulipiya ; Zheng-Wen, Fu ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>The anionic redox reaction (ARR) has become a hot topic in battery research due to its ability to provide high energy density. Nevertheless, there are still many issues in Na-based layered oxides with the ARR, such as large voltage hysteresis, lattice oxygen loss, irreversible structural changes, and cation migration in the TM layer, resulting in structural collapse and poor electrochemical performance. Herein, a series of Na2/3[Fe1/3MgxMn2/3−x]O2 cathodes are synthesized using a traditional solid-state reaction method. The effectiveness of Mg substitution amounts and site occupancy in regulating the reversibility of the ARR has been explored using various experimental techniques. Surprisingly, the well-designed Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 exhibits an extremely high initial reversible capacity of ∼253.21 mA h g−1, equivalent to ∼0.94 e− transfer, which is contributed by both cationic and anionic redox reactions as confirmed by hard X-ray absorption spectroscopy (hXAS) and soft X-ray absorption spectroscopy (sXAS) analyses. In addition, the improved cycling and high-rate performance of the P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 are achieved by a well-maintained crystal structure and the highly reversible anionic redox reaction of O2−/On−. These in-depth studies provide crucial knowledge for the development and understanding of cathode materials with a highly reversible ARR for low-cost and high-energy sodium-ion batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta00380b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Batteries ; Cathodes ; Cations ; Crystal structure ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Ion migration ; Magnesium ; MATERIALS SCIENCE ; Materials substitution ; Rechargeable batteries ; Redox reactions ; Sodium ; Sodium-ion batteries ; Soft x rays ; Spectrum analysis ; Substitution reactions ; X ray absorption ; X-ray absorption spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024, Vol.12 (23), p.13841-13851</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009000856911010 ; 0000000246490194 ; 0000000191407495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2437740$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ming-Hui, Cao</creatorcontrib><creatorcontrib>Ren-Yan, Li</creatorcontrib><creatorcontrib>Qing-Wen, Sun</creatorcontrib><creatorcontrib>Cui, Miao</creatorcontrib><creatorcontrib>Ze-Wei Guo</creatorcontrib><creatorcontrib>Lu, Ma</creatorcontrib><creatorcontrib>Shadike, Zulipiya</creatorcontrib><creatorcontrib>Zheng-Wen, Fu</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The anionic redox reaction (ARR) has become a hot topic in battery research due to its ability to provide high energy density. Nevertheless, there are still many issues in Na-based layered oxides with the ARR, such as large voltage hysteresis, lattice oxygen loss, irreversible structural changes, and cation migration in the TM layer, resulting in structural collapse and poor electrochemical performance. Herein, a series of Na2/3[Fe1/3MgxMn2/3−x]O2 cathodes are synthesized using a traditional solid-state reaction method. The effectiveness of Mg substitution amounts and site occupancy in regulating the reversibility of the ARR has been explored using various experimental techniques. Surprisingly, the well-designed Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 exhibits an extremely high initial reversible capacity of ∼253.21 mA h g−1, equivalent to ∼0.94 e− transfer, which is contributed by both cationic and anionic redox reactions as confirmed by hard X-ray absorption spectroscopy (hXAS) and soft X-ray absorption spectroscopy (sXAS) analyses. In addition, the improved cycling and high-rate performance of the P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 are achieved by a well-maintained crystal structure and the highly reversible anionic redox reaction of O2−/On−. These in-depth studies provide crucial knowledge for the development and understanding of cathode materials with a highly reversible ARR for low-cost and high-energy sodium-ion batteries.</description><subject>Absorption spectroscopy</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Cations</subject><subject>Crystal structure</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Ion migration</subject><subject>Magnesium</subject><subject>MATERIALS SCIENCE</subject><subject>Materials substitution</subject><subject>Rechargeable batteries</subject><subject>Redox reactions</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Soft x rays</subject><subject>Spectrum analysis</subject><subject>Substitution reactions</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9T8tOwzAQtBBIVKUXvsCCc8j6Eds5VhUFpD44lBNCUWI7Tao2LrEj2r_HUhF72BlpZlazCN0TeCLA8tTwUAIwBdUVGlHIIJE8F9f_XKlbNPF-B3EUgMjzETpNO7wq080y8W2weLnFfqh8aMMQrMHvNFmVNGWfc0tSttySlNBlJ-P-WlOsy9A4Y_FPGxpsT6G3B7s_46bdNlE7lroNZ1y7Hntn2uGQtK7DVRmC7Vvr79BNXe69nfzhGH3Mnzez12SxfnmbTReJowRCogSppJJCG8syo-uMcJHVUlClWQ08A6aZqIjIDRAmZSUgk5zntFbMlFBLNkYPl7suflX42MnqRruuszoUlMcMh2h6vJiOvfserA_Fzg19F3sVDISguWJEsF8EN2bd</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ming-Hui, Cao</creator><creator>Ren-Yan, Li</creator><creator>Qing-Wen, Sun</creator><creator>Cui, Miao</creator><creator>Ze-Wei Guo</creator><creator>Lu, Ma</creator><creator>Shadike, Zulipiya</creator><creator>Zheng-Wen, Fu</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0009000856911010</orcidid><orcidid>https://orcid.org/0000000246490194</orcidid><orcidid>https://orcid.org/0000000191407495</orcidid></search><sort><creationdate>2024</creationdate><title>An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries</title><author>Ming-Hui, Cao ; Ren-Yan, Li ; Qing-Wen, Sun ; Cui, Miao ; Ze-Wei Guo ; Lu, Ma ; Shadike, Zulipiya ; Zheng-Wen, Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o210t-861b7876cde35dcf51465f7628c3f04503c36b169d01377b60574492f83da0f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Cations</topic><topic>Crystal structure</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Ion migration</topic><topic>Magnesium</topic><topic>MATERIALS SCIENCE</topic><topic>Materials substitution</topic><topic>Rechargeable batteries</topic><topic>Redox reactions</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Soft x rays</topic><topic>Spectrum analysis</topic><topic>Substitution reactions</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming-Hui, Cao</creatorcontrib><creatorcontrib>Ren-Yan, Li</creatorcontrib><creatorcontrib>Qing-Wen, Sun</creatorcontrib><creatorcontrib>Cui, Miao</creatorcontrib><creatorcontrib>Ze-Wei Guo</creatorcontrib><creatorcontrib>Lu, Ma</creatorcontrib><creatorcontrib>Shadike, Zulipiya</creatorcontrib><creatorcontrib>Zheng-Wen, Fu</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming-Hui, Cao</au><au>Ren-Yan, Li</au><au>Qing-Wen, Sun</au><au>Cui, Miao</au><au>Ze-Wei Guo</au><au>Lu, Ma</au><au>Shadike, Zulipiya</au><au>Zheng-Wen, Fu</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024</date><risdate>2024</risdate><volume>12</volume><issue>23</issue><spage>13841</spage><epage>13851</epage><pages>13841-13851</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The anionic redox reaction (ARR) has become a hot topic in battery research due to its ability to provide high energy density. Nevertheless, there are still many issues in Na-based layered oxides with the ARR, such as large voltage hysteresis, lattice oxygen loss, irreversible structural changes, and cation migration in the TM layer, resulting in structural collapse and poor electrochemical performance. Herein, a series of Na2/3[Fe1/3MgxMn2/3−x]O2 cathodes are synthesized using a traditional solid-state reaction method. The effectiveness of Mg substitution amounts and site occupancy in regulating the reversibility of the ARR has been explored using various experimental techniques. Surprisingly, the well-designed Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 exhibits an extremely high initial reversible capacity of ∼253.21 mA h g−1, equivalent to ∼0.94 e− transfer, which is contributed by both cationic and anionic redox reactions as confirmed by hard X-ray absorption spectroscopy (hXAS) and soft X-ray absorption spectroscopy (sXAS) analyses. In addition, the improved cycling and high-rate performance of the P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 are achieved by a well-maintained crystal structure and the highly reversible anionic redox reaction of O2−/On−. These in-depth studies provide crucial knowledge for the development and understanding of cathode materials with a highly reversible ARR for low-cost and high-energy sodium-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta00380b</doi><tpages>11</tpages><orcidid>https://orcid.org/0009000856911010</orcidid><orcidid>https://orcid.org/0000000246490194</orcidid><orcidid>https://orcid.org/0000000191407495</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024, Vol.12 (23), p.13841-13851
issn 2050-7488
2050-7496
language eng
recordid cdi_osti_scitechconnect_2437740
source Royal Society Of Chemistry Journals
subjects Absorption spectroscopy
Batteries
Cathodes
Cations
Crystal structure
Electrochemical analysis
Electrochemistry
Electrode materials
Ion migration
Magnesium
MATERIALS SCIENCE
Materials substitution
Rechargeable batteries
Redox reactions
Sodium
Sodium-ion batteries
Soft x rays
Spectrum analysis
Substitution reactions
X ray absorption
X-ray absorption spectroscopy
title An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Na/TM-site%20Mg%20substituted%20P2-Na2/3%5BFe1/3Mg1/12Mn7/12%5DO2%20cathode%20with%20extremely%20high%20capacity%20for%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ming-Hui,%20Cao&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2024&rft.volume=12&rft.issue=23&rft.spage=13841&rft.epage=13851&rft.pages=13841-13851&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta00380b&rft_dat=%3Cproquest_osti_%3E3066298316%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066298316&rft_id=info:pmid/&rfr_iscdi=true