An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries
The anionic redox reaction (ARR) has become a hot topic in battery research due to its ability to provide high energy density. Nevertheless, there are still many issues in Na-based layered oxides with the ARR, such as large voltage hysteresis, lattice oxygen loss, irreversible structural changes, an...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024, Vol.12 (23), p.13841-13851 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13851 |
---|---|
container_issue | 23 |
container_start_page | 13841 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Ming-Hui, Cao Ren-Yan, Li Qing-Wen, Sun Cui, Miao Ze-Wei Guo Lu, Ma Shadike, Zulipiya Zheng-Wen, Fu |
description | The anionic redox reaction (ARR) has become a hot topic in battery research due to its ability to provide high energy density. Nevertheless, there are still many issues in Na-based layered oxides with the ARR, such as large voltage hysteresis, lattice oxygen loss, irreversible structural changes, and cation migration in the TM layer, resulting in structural collapse and poor electrochemical performance. Herein, a series of Na2/3[Fe1/3MgxMn2/3−x]O2 cathodes are synthesized using a traditional solid-state reaction method. The effectiveness of Mg substitution amounts and site occupancy in regulating the reversibility of the ARR has been explored using various experimental techniques. Surprisingly, the well-designed Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 exhibits an extremely high initial reversible capacity of ∼253.21 mA h g−1, equivalent to ∼0.94 e− transfer, which is contributed by both cationic and anionic redox reactions as confirmed by hard X-ray absorption spectroscopy (hXAS) and soft X-ray absorption spectroscopy (sXAS) analyses. In addition, the improved cycling and high-rate performance of the P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 are achieved by a well-maintained crystal structure and the highly reversible anionic redox reaction of O2−/On−. These in-depth studies provide crucial knowledge for the development and understanding of cathode materials with a highly reversible ARR for low-cost and high-energy sodium-ion batteries. |
doi_str_mv | 10.1039/d4ta00380b |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2437740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066298316</sourcerecordid><originalsourceid>FETCH-LOGICAL-o210t-861b7876cde35dcf51465f7628c3f04503c36b169d01377b60574492f83da0f73</originalsourceid><addsrcrecordid>eNo9T8tOwzAQtBBIVKUXvsCCc8j6Eds5VhUFpD44lBNCUWI7Tao2LrEj2r_HUhF72BlpZlazCN0TeCLA8tTwUAIwBdUVGlHIIJE8F9f_XKlbNPF-B3EUgMjzETpNO7wq080y8W2weLnFfqh8aMMQrMHvNFmVNGWfc0tSttySlNBlJ-P-WlOsy9A4Y_FPGxpsT6G3B7s_46bdNlE7lroNZ1y7Hntn2uGQtK7DVRmC7Vvr79BNXe69nfzhGH3Mnzez12SxfnmbTReJowRCogSppJJCG8syo-uMcJHVUlClWQ08A6aZqIjIDRAmZSUgk5zntFbMlFBLNkYPl7suflX42MnqRruuszoUlMcMh2h6vJiOvfserA_Fzg19F3sVDISguWJEsF8EN2bd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066298316</pqid></control><display><type>article</type><title>An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Ming-Hui, Cao ; Ren-Yan, Li ; Qing-Wen, Sun ; Cui, Miao ; Ze-Wei Guo ; Lu, Ma ; Shadike, Zulipiya ; Zheng-Wen, Fu</creator><creatorcontrib>Ming-Hui, Cao ; Ren-Yan, Li ; Qing-Wen, Sun ; Cui, Miao ; Ze-Wei Guo ; Lu, Ma ; Shadike, Zulipiya ; Zheng-Wen, Fu ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>The anionic redox reaction (ARR) has become a hot topic in battery research due to its ability to provide high energy density. Nevertheless, there are still many issues in Na-based layered oxides with the ARR, such as large voltage hysteresis, lattice oxygen loss, irreversible structural changes, and cation migration in the TM layer, resulting in structural collapse and poor electrochemical performance. Herein, a series of Na2/3[Fe1/3MgxMn2/3−x]O2 cathodes are synthesized using a traditional solid-state reaction method. The effectiveness of Mg substitution amounts and site occupancy in regulating the reversibility of the ARR has been explored using various experimental techniques. Surprisingly, the well-designed Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 exhibits an extremely high initial reversible capacity of ∼253.21 mA h g−1, equivalent to ∼0.94 e− transfer, which is contributed by both cationic and anionic redox reactions as confirmed by hard X-ray absorption spectroscopy (hXAS) and soft X-ray absorption spectroscopy (sXAS) analyses. In addition, the improved cycling and high-rate performance of the P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 are achieved by a well-maintained crystal structure and the highly reversible anionic redox reaction of O2−/On−. These in-depth studies provide crucial knowledge for the development and understanding of cathode materials with a highly reversible ARR for low-cost and high-energy sodium-ion batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta00380b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Batteries ; Cathodes ; Cations ; Crystal structure ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Ion migration ; Magnesium ; MATERIALS SCIENCE ; Materials substitution ; Rechargeable batteries ; Redox reactions ; Sodium ; Sodium-ion batteries ; Soft x rays ; Spectrum analysis ; Substitution reactions ; X ray absorption ; X-ray absorption spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024, Vol.12 (23), p.13841-13851</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009000856911010 ; 0000000246490194 ; 0000000191407495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2437740$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ming-Hui, Cao</creatorcontrib><creatorcontrib>Ren-Yan, Li</creatorcontrib><creatorcontrib>Qing-Wen, Sun</creatorcontrib><creatorcontrib>Cui, Miao</creatorcontrib><creatorcontrib>Ze-Wei Guo</creatorcontrib><creatorcontrib>Lu, Ma</creatorcontrib><creatorcontrib>Shadike, Zulipiya</creatorcontrib><creatorcontrib>Zheng-Wen, Fu</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The anionic redox reaction (ARR) has become a hot topic in battery research due to its ability to provide high energy density. Nevertheless, there are still many issues in Na-based layered oxides with the ARR, such as large voltage hysteresis, lattice oxygen loss, irreversible structural changes, and cation migration in the TM layer, resulting in structural collapse and poor electrochemical performance. Herein, a series of Na2/3[Fe1/3MgxMn2/3−x]O2 cathodes are synthesized using a traditional solid-state reaction method. The effectiveness of Mg substitution amounts and site occupancy in regulating the reversibility of the ARR has been explored using various experimental techniques. Surprisingly, the well-designed Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 exhibits an extremely high initial reversible capacity of ∼253.21 mA h g−1, equivalent to ∼0.94 e− transfer, which is contributed by both cationic and anionic redox reactions as confirmed by hard X-ray absorption spectroscopy (hXAS) and soft X-ray absorption spectroscopy (sXAS) analyses. In addition, the improved cycling and high-rate performance of the P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 are achieved by a well-maintained crystal structure and the highly reversible anionic redox reaction of O2−/On−. These in-depth studies provide crucial knowledge for the development and understanding of cathode materials with a highly reversible ARR for low-cost and high-energy sodium-ion batteries.</description><subject>Absorption spectroscopy</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Cations</subject><subject>Crystal structure</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Ion migration</subject><subject>Magnesium</subject><subject>MATERIALS SCIENCE</subject><subject>Materials substitution</subject><subject>Rechargeable batteries</subject><subject>Redox reactions</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Soft x rays</subject><subject>Spectrum analysis</subject><subject>Substitution reactions</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9T8tOwzAQtBBIVKUXvsCCc8j6Eds5VhUFpD44lBNCUWI7Tao2LrEj2r_HUhF72BlpZlazCN0TeCLA8tTwUAIwBdUVGlHIIJE8F9f_XKlbNPF-B3EUgMjzETpNO7wq080y8W2weLnFfqh8aMMQrMHvNFmVNGWfc0tSttySlNBlJ-P-WlOsy9A4Y_FPGxpsT6G3B7s_46bdNlE7lroNZ1y7Hntn2uGQtK7DVRmC7Vvr79BNXe69nfzhGH3Mnzez12SxfnmbTReJowRCogSppJJCG8syo-uMcJHVUlClWQ08A6aZqIjIDRAmZSUgk5zntFbMlFBLNkYPl7suflX42MnqRruuszoUlMcMh2h6vJiOvfserA_Fzg19F3sVDISguWJEsF8EN2bd</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ming-Hui, Cao</creator><creator>Ren-Yan, Li</creator><creator>Qing-Wen, Sun</creator><creator>Cui, Miao</creator><creator>Ze-Wei Guo</creator><creator>Lu, Ma</creator><creator>Shadike, Zulipiya</creator><creator>Zheng-Wen, Fu</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0009000856911010</orcidid><orcidid>https://orcid.org/0000000246490194</orcidid><orcidid>https://orcid.org/0000000191407495</orcidid></search><sort><creationdate>2024</creationdate><title>An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries</title><author>Ming-Hui, Cao ; Ren-Yan, Li ; Qing-Wen, Sun ; Cui, Miao ; Ze-Wei Guo ; Lu, Ma ; Shadike, Zulipiya ; Zheng-Wen, Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o210t-861b7876cde35dcf51465f7628c3f04503c36b169d01377b60574492f83da0f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Cations</topic><topic>Crystal structure</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Ion migration</topic><topic>Magnesium</topic><topic>MATERIALS SCIENCE</topic><topic>Materials substitution</topic><topic>Rechargeable batteries</topic><topic>Redox reactions</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Soft x rays</topic><topic>Spectrum analysis</topic><topic>Substitution reactions</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming-Hui, Cao</creatorcontrib><creatorcontrib>Ren-Yan, Li</creatorcontrib><creatorcontrib>Qing-Wen, Sun</creatorcontrib><creatorcontrib>Cui, Miao</creatorcontrib><creatorcontrib>Ze-Wei Guo</creatorcontrib><creatorcontrib>Lu, Ma</creatorcontrib><creatorcontrib>Shadike, Zulipiya</creatorcontrib><creatorcontrib>Zheng-Wen, Fu</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming-Hui, Cao</au><au>Ren-Yan, Li</au><au>Qing-Wen, Sun</au><au>Cui, Miao</au><au>Ze-Wei Guo</au><au>Lu, Ma</au><au>Shadike, Zulipiya</au><au>Zheng-Wen, Fu</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024</date><risdate>2024</risdate><volume>12</volume><issue>23</issue><spage>13841</spage><epage>13851</epage><pages>13841-13851</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The anionic redox reaction (ARR) has become a hot topic in battery research due to its ability to provide high energy density. Nevertheless, there are still many issues in Na-based layered oxides with the ARR, such as large voltage hysteresis, lattice oxygen loss, irreversible structural changes, and cation migration in the TM layer, resulting in structural collapse and poor electrochemical performance. Herein, a series of Na2/3[Fe1/3MgxMn2/3−x]O2 cathodes are synthesized using a traditional solid-state reaction method. The effectiveness of Mg substitution amounts and site occupancy in regulating the reversibility of the ARR has been explored using various experimental techniques. Surprisingly, the well-designed Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 exhibits an extremely high initial reversible capacity of ∼253.21 mA h g−1, equivalent to ∼0.94 e− transfer, which is contributed by both cationic and anionic redox reactions as confirmed by hard X-ray absorption spectroscopy (hXAS) and soft X-ray absorption spectroscopy (sXAS) analyses. In addition, the improved cycling and high-rate performance of the P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 are achieved by a well-maintained crystal structure and the highly reversible anionic redox reaction of O2−/On−. These in-depth studies provide crucial knowledge for the development and understanding of cathode materials with a highly reversible ARR for low-cost and high-energy sodium-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta00380b</doi><tpages>11</tpages><orcidid>https://orcid.org/0009000856911010</orcidid><orcidid>https://orcid.org/0000000246490194</orcidid><orcidid>https://orcid.org/0000000191407495</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024, Vol.12 (23), p.13841-13851 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_osti_scitechconnect_2437740 |
source | Royal Society Of Chemistry Journals |
subjects | Absorption spectroscopy Batteries Cathodes Cations Crystal structure Electrochemical analysis Electrochemistry Electrode materials Ion migration Magnesium MATERIALS SCIENCE Materials substitution Rechargeable batteries Redox reactions Sodium Sodium-ion batteries Soft x rays Spectrum analysis Substitution reactions X ray absorption X-ray absorption spectroscopy |
title | An Na/TM-site Mg substituted P2-Na2/3[Fe1/3Mg1/12Mn7/12]O2 cathode with extremely high capacity for sodium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Na/TM-site%20Mg%20substituted%20P2-Na2/3%5BFe1/3Mg1/12Mn7/12%5DO2%20cathode%20with%20extremely%20high%20capacity%20for%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ming-Hui,%20Cao&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2024&rft.volume=12&rft.issue=23&rft.spage=13841&rft.epage=13851&rft.pages=13841-13851&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta00380b&rft_dat=%3Cproquest_osti_%3E3066298316%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066298316&rft_id=info:pmid/&rfr_iscdi=true |