Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes
The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron-electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical reso...
Gespeichert in:
Veröffentlicht in: | Materials 2024-07, Vol.17 (15), p.3676 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 3676 |
container_title | Materials |
container_volume | 17 |
creator | Oyibo, Gideon Barrett, Thomas Jois, Sharadh Blackburn, Jeffrey L Lee, Ji Ung |
description | The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron-electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors is dominated by excitons, making their electronic bandgap more difficult to measure. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal
diodes. We show that our s-SWCNT networks have a short minority carrier lifetime due to the presence of interface trap states, making the diodes non-ideal. We use the generation and recombination leakage currents from these non-ideal diodes to measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55 nm), (7,5) (0.83 nm), and (6,5) (0.76 nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs. The techniques outlined here demonstrate a robust strategy that can be applied to measuring the electronic bandgaps and exciton binding energies of a broad variety of nanoscale and quantum-confined semiconductors, including the most modern nanoscale transistors that rely on nanowire geometries. |
doi_str_mv | 10.3390/ma17153676 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2437672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804513966</galeid><sourcerecordid>A804513966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-63b05be6442a994b035ed0f944f2e748cbec942adcc0950cf10b37ed3a5838fa3</originalsourceid><addsrcrecordid>eNpdkV1vFSEQhomxsU3tjT_AEL0xJlthh2WXy3patUlbb-o1YdnhlLoLR2DT-O-lOfUjwgWT4ZnhfRlCXnF2CqDYh8Xwnncge_mMHHGlZMOVEM__iQ_JSc73rC4APrTqBTkExVsBgh2R22s0eU0-bGm5Q3oxoy0pBm_pRxOmrdnR6OjGpDEGemNCLOuI9AbLQ0zfM_U1GUNzOaGZ6a4J9NzHCfNLcuDMnPHk6Twm3z5d3G6-NFdfP19uzq4aC0yWRsLIuhGlEK1RSowMOpyYq5Jdi70Y7IhW1bvJWqY6Zh1nI_Q4gekGGJyBY_Jm3zfm4nW2vqC9szGEakJXg73s2wq920O7FH-smItefLY4zyZgXLMGVj9j6GBQFX37H3of1xSqhUeqaqgdu0qd7qmtmVH74GJJxtY94eLr6-h8zZ8NTHQclJS14P2-wKaYc0Knd8kvJv3UnOnHIeq_Q6zw6ycN67jg9Af9PTL4BTMXk8s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090953765</pqid></control><display><type>article</type><title>Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Oyibo, Gideon ; Barrett, Thomas ; Jois, Sharadh ; Blackburn, Jeffrey L ; Lee, Ji Ung</creator><creatorcontrib>Oyibo, Gideon ; Barrett, Thomas ; Jois, Sharadh ; Blackburn, Jeffrey L ; Lee, Ji Ung ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron-electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors is dominated by excitons, making their electronic bandgap more difficult to measure. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal
diodes. We show that our s-SWCNT networks have a short minority carrier lifetime due to the presence of interface trap states, making the diodes non-ideal. We use the generation and recombination leakage currents from these non-ideal diodes to measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55 nm), (7,5) (0.83 nm), and (6,5) (0.76 nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs. The techniques outlined here demonstrate a robust strategy that can be applied to measuring the electronic bandgaps and exciton binding energies of a broad variety of nanoscale and quantum-confined semiconductors, including the most modern nanoscale transistors that rely on nanowire geometries.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17153676</identifier><identifier>PMID: 39124340</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Arc discharges ; bandgap ; Binding energy ; Carbon ; carbon nanotube ; Carrier lifetime ; Carrier recombination ; Current carriers ; Diodes ; Electric arcs ; Energy ; Energy gap ; Excitons ; Force and energy ; Leakage current ; Low dimensional semiconductors ; MATERIALS SCIENCE ; Measurement ; Minority carriers ; Nanotubes ; Nanowires ; Networks ; Optical resonance ; p-n diode ; Polymers ; Single wall carbon nanotubes ; Temperature ; Transistors ; Trends</subject><ispartof>Materials, 2024-07, Vol.17 (15), p.3676</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-63b05be6442a994b035ed0f944f2e748cbec942adcc0950cf10b37ed3a5838fa3</cites><orcidid>0000000292375891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39124340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2437672$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Oyibo, Gideon</creatorcontrib><creatorcontrib>Barrett, Thomas</creatorcontrib><creatorcontrib>Jois, Sharadh</creatorcontrib><creatorcontrib>Blackburn, Jeffrey L</creatorcontrib><creatorcontrib>Lee, Ji Ung</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron-electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors is dominated by excitons, making their electronic bandgap more difficult to measure. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal
diodes. We show that our s-SWCNT networks have a short minority carrier lifetime due to the presence of interface trap states, making the diodes non-ideal. We use the generation and recombination leakage currents from these non-ideal diodes to measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55 nm), (7,5) (0.83 nm), and (6,5) (0.76 nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs. The techniques outlined here demonstrate a robust strategy that can be applied to measuring the electronic bandgaps and exciton binding energies of a broad variety of nanoscale and quantum-confined semiconductors, including the most modern nanoscale transistors that rely on nanowire geometries.</description><subject>Arc discharges</subject><subject>bandgap</subject><subject>Binding energy</subject><subject>Carbon</subject><subject>carbon nanotube</subject><subject>Carrier lifetime</subject><subject>Carrier recombination</subject><subject>Current carriers</subject><subject>Diodes</subject><subject>Electric arcs</subject><subject>Energy</subject><subject>Energy gap</subject><subject>Excitons</subject><subject>Force and energy</subject><subject>Leakage current</subject><subject>Low dimensional semiconductors</subject><subject>MATERIALS SCIENCE</subject><subject>Measurement</subject><subject>Minority carriers</subject><subject>Nanotubes</subject><subject>Nanowires</subject><subject>Networks</subject><subject>Optical resonance</subject><subject>p-n diode</subject><subject>Polymers</subject><subject>Single wall carbon nanotubes</subject><subject>Temperature</subject><subject>Transistors</subject><subject>Trends</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1vFSEQhomxsU3tjT_AEL0xJlthh2WXy3patUlbb-o1YdnhlLoLR2DT-O-lOfUjwgWT4ZnhfRlCXnF2CqDYh8Xwnncge_mMHHGlZMOVEM__iQ_JSc73rC4APrTqBTkExVsBgh2R22s0eU0-bGm5Q3oxoy0pBm_pRxOmrdnR6OjGpDEGemNCLOuI9AbLQ0zfM_U1GUNzOaGZ6a4J9NzHCfNLcuDMnPHk6Twm3z5d3G6-NFdfP19uzq4aC0yWRsLIuhGlEK1RSowMOpyYq5Jdi70Y7IhW1bvJWqY6Zh1nI_Q4gekGGJyBY_Jm3zfm4nW2vqC9szGEakJXg73s2wq920O7FH-smItefLY4zyZgXLMGVj9j6GBQFX37H3of1xSqhUeqaqgdu0qd7qmtmVH74GJJxtY94eLr6-h8zZ8NTHQclJS14P2-wKaYc0Knd8kvJv3UnOnHIeq_Q6zw6ycN67jg9Af9PTL4BTMXk8s</recordid><startdate>20240725</startdate><enddate>20240725</enddate><creator>Oyibo, Gideon</creator><creator>Barrett, Thomas</creator><creator>Jois, Sharadh</creator><creator>Blackburn, Jeffrey L</creator><creator>Lee, Ji Ung</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000292375891</orcidid></search><sort><creationdate>20240725</creationdate><title>Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes</title><author>Oyibo, Gideon ; Barrett, Thomas ; Jois, Sharadh ; Blackburn, Jeffrey L ; Lee, Ji Ung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-63b05be6442a994b035ed0f944f2e748cbec942adcc0950cf10b37ed3a5838fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arc discharges</topic><topic>bandgap</topic><topic>Binding energy</topic><topic>Carbon</topic><topic>carbon nanotube</topic><topic>Carrier lifetime</topic><topic>Carrier recombination</topic><topic>Current carriers</topic><topic>Diodes</topic><topic>Electric arcs</topic><topic>Energy</topic><topic>Energy gap</topic><topic>Excitons</topic><topic>Force and energy</topic><topic>Leakage current</topic><topic>Low dimensional semiconductors</topic><topic>MATERIALS SCIENCE</topic><topic>Measurement</topic><topic>Minority carriers</topic><topic>Nanotubes</topic><topic>Nanowires</topic><topic>Networks</topic><topic>Optical resonance</topic><topic>p-n diode</topic><topic>Polymers</topic><topic>Single wall carbon nanotubes</topic><topic>Temperature</topic><topic>Transistors</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oyibo, Gideon</creatorcontrib><creatorcontrib>Barrett, Thomas</creatorcontrib><creatorcontrib>Jois, Sharadh</creatorcontrib><creatorcontrib>Blackburn, Jeffrey L</creatorcontrib><creatorcontrib>Lee, Ji Ung</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oyibo, Gideon</au><au>Barrett, Thomas</au><au>Jois, Sharadh</au><au>Blackburn, Jeffrey L</au><au>Lee, Ji Ung</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-07-25</date><risdate>2024</risdate><volume>17</volume><issue>15</issue><spage>3676</spage><pages>3676-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron-electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors is dominated by excitons, making their electronic bandgap more difficult to measure. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal
diodes. We show that our s-SWCNT networks have a short minority carrier lifetime due to the presence of interface trap states, making the diodes non-ideal. We use the generation and recombination leakage currents from these non-ideal diodes to measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55 nm), (7,5) (0.83 nm), and (6,5) (0.76 nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs. The techniques outlined here demonstrate a robust strategy that can be applied to measuring the electronic bandgaps and exciton binding energies of a broad variety of nanoscale and quantum-confined semiconductors, including the most modern nanoscale transistors that rely on nanowire geometries.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39124340</pmid><doi>10.3390/ma17153676</doi><orcidid>https://orcid.org/0000000292375891</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-07, Vol.17 (15), p.3676 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_osti_scitechconnect_2437672 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Arc discharges bandgap Binding energy Carbon carbon nanotube Carrier lifetime Carrier recombination Current carriers Diodes Electric arcs Energy Energy gap Excitons Force and energy Leakage current Low dimensional semiconductors MATERIALS SCIENCE Measurement Minority carriers Nanotubes Nanowires Networks Optical resonance p-n diode Polymers Single wall carbon nanotubes Temperature Transistors Trends |
title | Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20Electronic%20Bandgap%20of%20Carbon%20Nanotube%20Networks%20in%20Non-Ideal%20p-n%20Diodes&rft.jtitle=Materials&rft.au=Oyibo,%20Gideon&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-07-25&rft.volume=17&rft.issue=15&rft.spage=3676&rft.pages=3676-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17153676&rft_dat=%3Cgale_osti_%3EA804513966%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090953765&rft_id=info:pmid/39124340&rft_galeid=A804513966&rfr_iscdi=true |