Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes

The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron-electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical reso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-07, Vol.17 (15), p.3676
Hauptverfasser: Oyibo, Gideon, Barrett, Thomas, Jois, Sharadh, Blackburn, Jeffrey L, Lee, Ji Ung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 3676
container_title Materials
container_volume 17
creator Oyibo, Gideon
Barrett, Thomas
Jois, Sharadh
Blackburn, Jeffrey L
Lee, Ji Ung
description The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron-electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors is dominated by excitons, making their electronic bandgap more difficult to measure. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal diodes. We show that our s-SWCNT networks have a short minority carrier lifetime due to the presence of interface trap states, making the diodes non-ideal. We use the generation and recombination leakage currents from these non-ideal diodes to measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55 nm), (7,5) (0.83 nm), and (6,5) (0.76 nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs. The techniques outlined here demonstrate a robust strategy that can be applied to measuring the electronic bandgaps and exciton binding energies of a broad variety of nanoscale and quantum-confined semiconductors, including the most modern nanoscale transistors that rely on nanowire geometries.
doi_str_mv 10.3390/ma17153676
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2437672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804513966</galeid><sourcerecordid>A804513966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-63b05be6442a994b035ed0f944f2e748cbec942adcc0950cf10b37ed3a5838fa3</originalsourceid><addsrcrecordid>eNpdkV1vFSEQhomxsU3tjT_AEL0xJlthh2WXy3patUlbb-o1YdnhlLoLR2DT-O-lOfUjwgWT4ZnhfRlCXnF2CqDYh8Xwnncge_mMHHGlZMOVEM__iQ_JSc73rC4APrTqBTkExVsBgh2R22s0eU0-bGm5Q3oxoy0pBm_pRxOmrdnR6OjGpDEGemNCLOuI9AbLQ0zfM_U1GUNzOaGZ6a4J9NzHCfNLcuDMnPHk6Twm3z5d3G6-NFdfP19uzq4aC0yWRsLIuhGlEK1RSowMOpyYq5Jdi70Y7IhW1bvJWqY6Zh1nI_Q4gekGGJyBY_Jm3zfm4nW2vqC9szGEakJXg73s2wq920O7FH-smItefLY4zyZgXLMGVj9j6GBQFX37H3of1xSqhUeqaqgdu0qd7qmtmVH74GJJxtY94eLr6-h8zZ8NTHQclJS14P2-wKaYc0Knd8kvJv3UnOnHIeq_Q6zw6ycN67jg9Af9PTL4BTMXk8s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090953765</pqid></control><display><type>article</type><title>Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Oyibo, Gideon ; Barrett, Thomas ; Jois, Sharadh ; Blackburn, Jeffrey L ; Lee, Ji Ung</creator><creatorcontrib>Oyibo, Gideon ; Barrett, Thomas ; Jois, Sharadh ; Blackburn, Jeffrey L ; Lee, Ji Ung ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron-electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors is dominated by excitons, making their electronic bandgap more difficult to measure. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal diodes. We show that our s-SWCNT networks have a short minority carrier lifetime due to the presence of interface trap states, making the diodes non-ideal. We use the generation and recombination leakage currents from these non-ideal diodes to measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55 nm), (7,5) (0.83 nm), and (6,5) (0.76 nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs. The techniques outlined here demonstrate a robust strategy that can be applied to measuring the electronic bandgaps and exciton binding energies of a broad variety of nanoscale and quantum-confined semiconductors, including the most modern nanoscale transistors that rely on nanowire geometries.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17153676</identifier><identifier>PMID: 39124340</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Arc discharges ; bandgap ; Binding energy ; Carbon ; carbon nanotube ; Carrier lifetime ; Carrier recombination ; Current carriers ; Diodes ; Electric arcs ; Energy ; Energy gap ; Excitons ; Force and energy ; Leakage current ; Low dimensional semiconductors ; MATERIALS SCIENCE ; Measurement ; Minority carriers ; Nanotubes ; Nanowires ; Networks ; Optical resonance ; p-n diode ; Polymers ; Single wall carbon nanotubes ; Temperature ; Transistors ; Trends</subject><ispartof>Materials, 2024-07, Vol.17 (15), p.3676</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-63b05be6442a994b035ed0f944f2e748cbec942adcc0950cf10b37ed3a5838fa3</cites><orcidid>0000000292375891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39124340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2437672$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Oyibo, Gideon</creatorcontrib><creatorcontrib>Barrett, Thomas</creatorcontrib><creatorcontrib>Jois, Sharadh</creatorcontrib><creatorcontrib>Blackburn, Jeffrey L</creatorcontrib><creatorcontrib>Lee, Ji Ung</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron-electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors is dominated by excitons, making their electronic bandgap more difficult to measure. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal diodes. We show that our s-SWCNT networks have a short minority carrier lifetime due to the presence of interface trap states, making the diodes non-ideal. We use the generation and recombination leakage currents from these non-ideal diodes to measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55 nm), (7,5) (0.83 nm), and (6,5) (0.76 nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs. The techniques outlined here demonstrate a robust strategy that can be applied to measuring the electronic bandgaps and exciton binding energies of a broad variety of nanoscale and quantum-confined semiconductors, including the most modern nanoscale transistors that rely on nanowire geometries.</description><subject>Arc discharges</subject><subject>bandgap</subject><subject>Binding energy</subject><subject>Carbon</subject><subject>carbon nanotube</subject><subject>Carrier lifetime</subject><subject>Carrier recombination</subject><subject>Current carriers</subject><subject>Diodes</subject><subject>Electric arcs</subject><subject>Energy</subject><subject>Energy gap</subject><subject>Excitons</subject><subject>Force and energy</subject><subject>Leakage current</subject><subject>Low dimensional semiconductors</subject><subject>MATERIALS SCIENCE</subject><subject>Measurement</subject><subject>Minority carriers</subject><subject>Nanotubes</subject><subject>Nanowires</subject><subject>Networks</subject><subject>Optical resonance</subject><subject>p-n diode</subject><subject>Polymers</subject><subject>Single wall carbon nanotubes</subject><subject>Temperature</subject><subject>Transistors</subject><subject>Trends</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1vFSEQhomxsU3tjT_AEL0xJlthh2WXy3patUlbb-o1YdnhlLoLR2DT-O-lOfUjwgWT4ZnhfRlCXnF2CqDYh8Xwnncge_mMHHGlZMOVEM__iQ_JSc73rC4APrTqBTkExVsBgh2R22s0eU0-bGm5Q3oxoy0pBm_pRxOmrdnR6OjGpDEGemNCLOuI9AbLQ0zfM_U1GUNzOaGZ6a4J9NzHCfNLcuDMnPHk6Twm3z5d3G6-NFdfP19uzq4aC0yWRsLIuhGlEK1RSowMOpyYq5Jdi70Y7IhW1bvJWqY6Zh1nI_Q4gekGGJyBY_Jm3zfm4nW2vqC9szGEakJXg73s2wq920O7FH-smItefLY4zyZgXLMGVj9j6GBQFX37H3of1xSqhUeqaqgdu0qd7qmtmVH74GJJxtY94eLr6-h8zZ8NTHQclJS14P2-wKaYc0Knd8kvJv3UnOnHIeq_Q6zw6ycN67jg9Af9PTL4BTMXk8s</recordid><startdate>20240725</startdate><enddate>20240725</enddate><creator>Oyibo, Gideon</creator><creator>Barrett, Thomas</creator><creator>Jois, Sharadh</creator><creator>Blackburn, Jeffrey L</creator><creator>Lee, Ji Ung</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000292375891</orcidid></search><sort><creationdate>20240725</creationdate><title>Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes</title><author>Oyibo, Gideon ; Barrett, Thomas ; Jois, Sharadh ; Blackburn, Jeffrey L ; Lee, Ji Ung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-63b05be6442a994b035ed0f944f2e748cbec942adcc0950cf10b37ed3a5838fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arc discharges</topic><topic>bandgap</topic><topic>Binding energy</topic><topic>Carbon</topic><topic>carbon nanotube</topic><topic>Carrier lifetime</topic><topic>Carrier recombination</topic><topic>Current carriers</topic><topic>Diodes</topic><topic>Electric arcs</topic><topic>Energy</topic><topic>Energy gap</topic><topic>Excitons</topic><topic>Force and energy</topic><topic>Leakage current</topic><topic>Low dimensional semiconductors</topic><topic>MATERIALS SCIENCE</topic><topic>Measurement</topic><topic>Minority carriers</topic><topic>Nanotubes</topic><topic>Nanowires</topic><topic>Networks</topic><topic>Optical resonance</topic><topic>p-n diode</topic><topic>Polymers</topic><topic>Single wall carbon nanotubes</topic><topic>Temperature</topic><topic>Transistors</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oyibo, Gideon</creatorcontrib><creatorcontrib>Barrett, Thomas</creatorcontrib><creatorcontrib>Jois, Sharadh</creatorcontrib><creatorcontrib>Blackburn, Jeffrey L</creatorcontrib><creatorcontrib>Lee, Ji Ung</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oyibo, Gideon</au><au>Barrett, Thomas</au><au>Jois, Sharadh</au><au>Blackburn, Jeffrey L</au><au>Lee, Ji Ung</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-07-25</date><risdate>2024</risdate><volume>17</volume><issue>15</issue><spage>3676</spage><pages>3676-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron-electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors is dominated by excitons, making their electronic bandgap more difficult to measure. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal diodes. We show that our s-SWCNT networks have a short minority carrier lifetime due to the presence of interface trap states, making the diodes non-ideal. We use the generation and recombination leakage currents from these non-ideal diodes to measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55 nm), (7,5) (0.83 nm), and (6,5) (0.76 nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs. The techniques outlined here demonstrate a robust strategy that can be applied to measuring the electronic bandgaps and exciton binding energies of a broad variety of nanoscale and quantum-confined semiconductors, including the most modern nanoscale transistors that rely on nanowire geometries.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39124340</pmid><doi>10.3390/ma17153676</doi><orcidid>https://orcid.org/0000000292375891</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-07, Vol.17 (15), p.3676
issn 1996-1944
1996-1944
language eng
recordid cdi_osti_scitechconnect_2437672
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Arc discharges
bandgap
Binding energy
Carbon
carbon nanotube
Carrier lifetime
Carrier recombination
Current carriers
Diodes
Electric arcs
Energy
Energy gap
Excitons
Force and energy
Leakage current
Low dimensional semiconductors
MATERIALS SCIENCE
Measurement
Minority carriers
Nanotubes
Nanowires
Networks
Optical resonance
p-n diode
Polymers
Single wall carbon nanotubes
Temperature
Transistors
Trends
title Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20Electronic%20Bandgap%20of%20Carbon%20Nanotube%20Networks%20in%20Non-Ideal%20p-n%20Diodes&rft.jtitle=Materials&rft.au=Oyibo,%20Gideon&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-07-25&rft.volume=17&rft.issue=15&rft.spage=3676&rft.pages=3676-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17153676&rft_dat=%3Cgale_osti_%3EA804513966%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090953765&rft_id=info:pmid/39124340&rft_galeid=A804513966&rfr_iscdi=true