On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid

The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction Π will almost certainly be nonorthogonal (and divergent) in any known stand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2024-09, Vol.45 (3), p.1245-1258
Hauptverfasser: Southworth, Ben S., Manteuffel, Thomas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1258
container_issue 3
container_start_page 1245
container_title SIAM journal on matrix analysis and applications
container_volume 45
creator Southworth, Ben S.
Manteuffel, Thomas A.
description The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction Π will almost certainly be nonorthogonal (and divergent) in any known standard product, meaning ∥Π∥ > 1. This introduces a new consideration, that one wants coarse-grid correction to be as close to orthogonal as possible, in an appropriate norm. In addition, due to nonorthogonality, Π may actually amplify certain error modes that are in the range of interpolation. Relaxation must then not only be complementary to interpolation, but also rapidly eliminate any error amplified by the nonorthogonal correction, or the algorithm may diverge. Here this paper develops analytic formulae on how to construct “compatible” transfer operators in nonsymmetric AMG such that ∥Π∥ = 1 in some standard matrix-induced norm. Discussion is provided on different options for the norm in the nonsymmetric setting, the relation between “ideal” transfer operators in different norms, and insight into the convergence of nonsymmetric reduction-based AMG.
doi_str_mv 10.1137/23M1586069
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2433953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1137_23M1586069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-2c015e0166abd2b1d5a79b431e6c1674f3bdd8d16a1ea1b2b5a2ceaa262cde913</originalsourceid><addsrcrecordid>eNpFkE1LAzEURYMoWKsbf8HgUhjNS2Yyk2WpVoXWbup6eEne1Mh8lCQu-u8dqeDqnsXlXjiM3QJ_AJDVo5AbKGvFlT5jM-C6zCtQ4pzNeD1xUen6kl3F-MU5qELDjD1th2w59gdM3nSU7QIOsaWQbQ8UMI0hZn7I3schHvueUvA2W3R7MgEn2nx3ye-Dd9fsosUu0s1fztnH6nm3fM3X25e35WKdWyiqlAvLoaTpWaFxwoArsdKmkEDKgqqKVhrnagcKgRCMMCUKS4hCCetIg5yzu9PuGJNvovWJ7Kcdh4FsakQhpS7lVLo_lWwYYwzUNofgewzHBnjzK6n5lyR_AKxfWZk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid</title><source>SIAM Journals Online</source><creator>Southworth, Ben S. ; Manteuffel, Thomas A.</creator><creatorcontrib>Southworth, Ben S. ; Manteuffel, Thomas A. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction Π will almost certainly be nonorthogonal (and divergent) in any known standard product, meaning ∥Π∥ &gt; 1. This introduces a new consideration, that one wants coarse-grid correction to be as close to orthogonal as possible, in an appropriate norm. In addition, due to nonorthogonality, Π may actually amplify certain error modes that are in the range of interpolation. Relaxation must then not only be complementary to interpolation, but also rapidly eliminate any error amplified by the nonorthogonal correction, or the algorithm may diverge. Here this paper develops analytic formulae on how to construct “compatible” transfer operators in nonsymmetric AMG such that ∥Π∥ = 1 in some standard matrix-induced norm. Discussion is provided on different options for the norm in the nonsymmetric setting, the relation between “ideal” transfer operators in different norms, and insight into the convergence of nonsymmetric reduction-based AMG.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/23M1586069</identifier><language>eng</language><publisher>United States: Society for Industrial and Applied Mathematics (SIAM)</publisher><subject>algebraic multigrid ; convergence ; mathematics ; MATHEMATICS AND COMPUTING ; projections</subject><ispartof>SIAM journal on matrix analysis and applications, 2024-09, Vol.45 (3), p.1245-1258</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-2c015e0166abd2b1d5a79b431e6c1674f3bdd8d16a1ea1b2b5a2ceaa262cde913</cites><orcidid>0000-0002-0283-4928 ; 0000000202834928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3184,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2433953$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Southworth, Ben S.</creatorcontrib><creatorcontrib>Manteuffel, Thomas A.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid</title><title>SIAM journal on matrix analysis and applications</title><description>The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction Π will almost certainly be nonorthogonal (and divergent) in any known standard product, meaning ∥Π∥ &gt; 1. This introduces a new consideration, that one wants coarse-grid correction to be as close to orthogonal as possible, in an appropriate norm. In addition, due to nonorthogonality, Π may actually amplify certain error modes that are in the range of interpolation. Relaxation must then not only be complementary to interpolation, but also rapidly eliminate any error amplified by the nonorthogonal correction, or the algorithm may diverge. Here this paper develops analytic formulae on how to construct “compatible” transfer operators in nonsymmetric AMG such that ∥Π∥ = 1 in some standard matrix-induced norm. Discussion is provided on different options for the norm in the nonsymmetric setting, the relation between “ideal” transfer operators in different norms, and insight into the convergence of nonsymmetric reduction-based AMG.</description><subject>algebraic multigrid</subject><subject>convergence</subject><subject>mathematics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>projections</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEURYMoWKsbf8HgUhjNS2Yyk2WpVoXWbup6eEne1Mh8lCQu-u8dqeDqnsXlXjiM3QJ_AJDVo5AbKGvFlT5jM-C6zCtQ4pzNeD1xUen6kl3F-MU5qELDjD1th2w59gdM3nSU7QIOsaWQbQ8UMI0hZn7I3schHvueUvA2W3R7MgEn2nx3ye-Dd9fsosUu0s1fztnH6nm3fM3X25e35WKdWyiqlAvLoaTpWaFxwoArsdKmkEDKgqqKVhrnagcKgRCMMCUKS4hCCetIg5yzu9PuGJNvovWJ7Kcdh4FsakQhpS7lVLo_lWwYYwzUNofgewzHBnjzK6n5lyR_AKxfWZk</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Southworth, Ben S.</creator><creator>Manteuffel, Thomas A.</creator><general>Society for Industrial and Applied Mathematics (SIAM)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0283-4928</orcidid><orcidid>https://orcid.org/0000000202834928</orcidid></search><sort><creationdate>20240930</creationdate><title>On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid</title><author>Southworth, Ben S. ; Manteuffel, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-2c015e0166abd2b1d5a79b431e6c1674f3bdd8d16a1ea1b2b5a2ceaa262cde913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>algebraic multigrid</topic><topic>convergence</topic><topic>mathematics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>projections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Southworth, Ben S.</creatorcontrib><creatorcontrib>Manteuffel, Thomas A.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Southworth, Ben S.</au><au>Manteuffel, Thomas A.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2024-09-30</date><risdate>2024</risdate><volume>45</volume><issue>3</issue><spage>1245</spage><epage>1258</epage><pages>1245-1258</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction Π will almost certainly be nonorthogonal (and divergent) in any known standard product, meaning ∥Π∥ &gt; 1. This introduces a new consideration, that one wants coarse-grid correction to be as close to orthogonal as possible, in an appropriate norm. In addition, due to nonorthogonality, Π may actually amplify certain error modes that are in the range of interpolation. Relaxation must then not only be complementary to interpolation, but also rapidly eliminate any error amplified by the nonorthogonal correction, or the algorithm may diverge. Here this paper develops analytic formulae on how to construct “compatible” transfer operators in nonsymmetric AMG such that ∥Π∥ = 1 in some standard matrix-induced norm. Discussion is provided on different options for the norm in the nonsymmetric setting, the relation between “ideal” transfer operators in different norms, and insight into the convergence of nonsymmetric reduction-based AMG.</abstract><cop>United States</cop><pub>Society for Industrial and Applied Mathematics (SIAM)</pub><doi>10.1137/23M1586069</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0283-4928</orcidid><orcidid>https://orcid.org/0000000202834928</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 2024-09, Vol.45 (3), p.1245-1258
issn 0895-4798
1095-7162
language eng
recordid cdi_osti_scitechconnect_2433953
source SIAM Journals Online
subjects algebraic multigrid
convergence
mathematics
MATHEMATICS AND COMPUTING
projections
title On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Compatible%20Transfer%20Operators%20in%20Nonsymmetric%20Algebraic%20Multigrid&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Southworth,%20Ben%20S.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-09-30&rft.volume=45&rft.issue=3&rft.spage=1245&rft.epage=1258&rft.pages=1245-1258&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/23M1586069&rft_dat=%3Ccrossref_osti_%3E10_1137_23M1586069%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true