On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid
The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction Π will almost certainly be nonorthogonal (and divergent) in any known stand...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 2024-09, Vol.45 (3), p.1245-1258 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1258 |
---|---|
container_issue | 3 |
container_start_page | 1245 |
container_title | SIAM journal on matrix analysis and applications |
container_volume | 45 |
creator | Southworth, Ben S. Manteuffel, Thomas A. |
description | The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction Π will almost certainly be nonorthogonal (and divergent) in any known standard product, meaning ∥Π∥ > 1. This introduces a new consideration, that one wants coarse-grid correction to be as close to orthogonal as possible, in an appropriate norm. In addition, due to nonorthogonality, Π may actually amplify certain error modes that are in the range of interpolation. Relaxation must then not only be complementary to interpolation, but also rapidly eliminate any error amplified by the nonorthogonal correction, or the algorithm may diverge. Here this paper develops analytic formulae on how to construct “compatible” transfer operators in nonsymmetric AMG such that ∥Π∥ = 1 in some standard matrix-induced norm. Discussion is provided on different options for the norm in the nonsymmetric setting, the relation between “ideal” transfer operators in different norms, and insight into the convergence of nonsymmetric reduction-based AMG. |
doi_str_mv | 10.1137/23M1586069 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2433953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1137_23M1586069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-2c015e0166abd2b1d5a79b431e6c1674f3bdd8d16a1ea1b2b5a2ceaa262cde913</originalsourceid><addsrcrecordid>eNpFkE1LAzEURYMoWKsbf8HgUhjNS2Yyk2WpVoXWbup6eEne1Mh8lCQu-u8dqeDqnsXlXjiM3QJ_AJDVo5AbKGvFlT5jM-C6zCtQ4pzNeD1xUen6kl3F-MU5qELDjD1th2w59gdM3nSU7QIOsaWQbQ8UMI0hZn7I3schHvueUvA2W3R7MgEn2nx3ye-Dd9fsosUu0s1fztnH6nm3fM3X25e35WKdWyiqlAvLoaTpWaFxwoArsdKmkEDKgqqKVhrnagcKgRCMMCUKS4hCCetIg5yzu9PuGJNvovWJ7Kcdh4FsakQhpS7lVLo_lWwYYwzUNofgewzHBnjzK6n5lyR_AKxfWZk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid</title><source>SIAM Journals Online</source><creator>Southworth, Ben S. ; Manteuffel, Thomas A.</creator><creatorcontrib>Southworth, Ben S. ; Manteuffel, Thomas A. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction Π will almost certainly be nonorthogonal (and divergent) in any known standard product, meaning ∥Π∥ > 1. This introduces a new consideration, that one wants coarse-grid correction to be as close to orthogonal as possible, in an appropriate norm. In addition, due to nonorthogonality, Π may actually amplify certain error modes that are in the range of interpolation. Relaxation must then not only be complementary to interpolation, but also rapidly eliminate any error amplified by the nonorthogonal correction, or the algorithm may diverge. Here this paper develops analytic formulae on how to construct “compatible” transfer operators in nonsymmetric AMG such that ∥Π∥ = 1 in some standard matrix-induced norm. Discussion is provided on different options for the norm in the nonsymmetric setting, the relation between “ideal” transfer operators in different norms, and insight into the convergence of nonsymmetric reduction-based AMG.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/23M1586069</identifier><language>eng</language><publisher>United States: Society for Industrial and Applied Mathematics (SIAM)</publisher><subject>algebraic multigrid ; convergence ; mathematics ; MATHEMATICS AND COMPUTING ; projections</subject><ispartof>SIAM journal on matrix analysis and applications, 2024-09, Vol.45 (3), p.1245-1258</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-2c015e0166abd2b1d5a79b431e6c1674f3bdd8d16a1ea1b2b5a2ceaa262cde913</cites><orcidid>0000-0002-0283-4928 ; 0000000202834928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3184,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2433953$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Southworth, Ben S.</creatorcontrib><creatorcontrib>Manteuffel, Thomas A.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid</title><title>SIAM journal on matrix analysis and applications</title><description>The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction Π will almost certainly be nonorthogonal (and divergent) in any known standard product, meaning ∥Π∥ > 1. This introduces a new consideration, that one wants coarse-grid correction to be as close to orthogonal as possible, in an appropriate norm. In addition, due to nonorthogonality, Π may actually amplify certain error modes that are in the range of interpolation. Relaxation must then not only be complementary to interpolation, but also rapidly eliminate any error amplified by the nonorthogonal correction, or the algorithm may diverge. Here this paper develops analytic formulae on how to construct “compatible” transfer operators in nonsymmetric AMG such that ∥Π∥ = 1 in some standard matrix-induced norm. Discussion is provided on different options for the norm in the nonsymmetric setting, the relation between “ideal” transfer operators in different norms, and insight into the convergence of nonsymmetric reduction-based AMG.</description><subject>algebraic multigrid</subject><subject>convergence</subject><subject>mathematics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>projections</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEURYMoWKsbf8HgUhjNS2Yyk2WpVoXWbup6eEne1Mh8lCQu-u8dqeDqnsXlXjiM3QJ_AJDVo5AbKGvFlT5jM-C6zCtQ4pzNeD1xUen6kl3F-MU5qELDjD1th2w59gdM3nSU7QIOsaWQbQ8UMI0hZn7I3schHvueUvA2W3R7MgEn2nx3ye-Dd9fsosUu0s1fztnH6nm3fM3X25e35WKdWyiqlAvLoaTpWaFxwoArsdKmkEDKgqqKVhrnagcKgRCMMCUKS4hCCetIg5yzu9PuGJNvovWJ7Kcdh4FsakQhpS7lVLo_lWwYYwzUNofgewzHBnjzK6n5lyR_AKxfWZk</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Southworth, Ben S.</creator><creator>Manteuffel, Thomas A.</creator><general>Society for Industrial and Applied Mathematics (SIAM)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0283-4928</orcidid><orcidid>https://orcid.org/0000000202834928</orcidid></search><sort><creationdate>20240930</creationdate><title>On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid</title><author>Southworth, Ben S. ; Manteuffel, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-2c015e0166abd2b1d5a79b431e6c1674f3bdd8d16a1ea1b2b5a2ceaa262cde913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>algebraic multigrid</topic><topic>convergence</topic><topic>mathematics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>projections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Southworth, Ben S.</creatorcontrib><creatorcontrib>Manteuffel, Thomas A.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Southworth, Ben S.</au><au>Manteuffel, Thomas A.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2024-09-30</date><risdate>2024</risdate><volume>45</volume><issue>3</issue><spage>1245</spage><epage>1258</epage><pages>1245-1258</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction Π will almost certainly be nonorthogonal (and divergent) in any known standard product, meaning ∥Π∥ > 1. This introduces a new consideration, that one wants coarse-grid correction to be as close to orthogonal as possible, in an appropriate norm. In addition, due to nonorthogonality, Π may actually amplify certain error modes that are in the range of interpolation. Relaxation must then not only be complementary to interpolation, but also rapidly eliminate any error amplified by the nonorthogonal correction, or the algorithm may diverge. Here this paper develops analytic formulae on how to construct “compatible” transfer operators in nonsymmetric AMG such that ∥Π∥ = 1 in some standard matrix-induced norm. Discussion is provided on different options for the norm in the nonsymmetric setting, the relation between “ideal” transfer operators in different norms, and insight into the convergence of nonsymmetric reduction-based AMG.</abstract><cop>United States</cop><pub>Society for Industrial and Applied Mathematics (SIAM)</pub><doi>10.1137/23M1586069</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0283-4928</orcidid><orcidid>https://orcid.org/0000000202834928</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4798 |
ispartof | SIAM journal on matrix analysis and applications, 2024-09, Vol.45 (3), p.1245-1258 |
issn | 0895-4798 1095-7162 |
language | eng |
recordid | cdi_osti_scitechconnect_2433953 |
source | SIAM Journals Online |
subjects | algebraic multigrid convergence mathematics MATHEMATICS AND COMPUTING projections |
title | On Compatible Transfer Operators in Nonsymmetric Algebraic Multigrid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Compatible%20Transfer%20Operators%20in%20Nonsymmetric%20Algebraic%20Multigrid&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Southworth,%20Ben%20S.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-09-30&rft.volume=45&rft.issue=3&rft.spage=1245&rft.epage=1258&rft.pages=1245-1258&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/23M1586069&rft_dat=%3Ccrossref_osti_%3E10_1137_23M1586069%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |