Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy
Several fast-spectrum nuclear reactors designed to generate high power (∼450 MWe) rely on forced convection of media such as supercritical CO2, sodium, or liquid lead to cool the nuclear core, operating at temperatures up to 600 °C. Cost-effective, high-strength Fe-based alumina forming austenitic (...
Gespeichert in:
Veröffentlicht in: | Scripta materialia 2024-12, Vol.253, p.116286, Article 116286 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 116286 |
container_title | Scripta materialia |
container_volume | 253 |
creator | Hyer, Holden C. Dryepondt, Sebastien Su, Yi-Feng Yamamoto, Yukinori Pint, Bruce A. Massey, Caleb P. |
description | Several fast-spectrum nuclear reactors designed to generate high power (∼450 MWe) rely on forced convection of media such as supercritical CO2, sodium, or liquid lead to cool the nuclear core, operating at temperatures up to 600 °C. Cost-effective, high-strength Fe-based alumina forming austenitic (AFA) alloys are a promising candidate for the fabrication of critical nuclear components. This study investigated laser powder bed fusion (LPBF) processing of an AFA alloy composition optimized for improved creep resistance. Electron microscopy revealed an elongated grain structure along the build direction with a fine sub-grain cellular structure decorated with (Cr,Fe,Nb)23C6 carbide precipitates at the intercellular boundaries. At temperatures of 20–900 °C, the LPBF alloy's superior tensile properties compared to its arc-melted counterpart and other advanced steels (e.g., SS316) were attributed to the distribution of nano-sized carbide precipitates, whereas the high ductility was attributed to the LPBF alloy's elongated grain structure.
[Display omitted] |
doi_str_mv | 10.1016/j.scriptamat.2024.116286 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2429843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964622400321X</els_id><sourcerecordid>S135964622400321X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-3620add253aefa47197a0c4fbc40b5dbea942b416d07c22ed3ad93a13f43863b3</originalsourceid><addsrcrecordid>eNqFkElPwzAUhH0AibL8B4t7gre6yREqNqkSB-Bsvdgvjassle1Uyr8nUZE4cnqH-WZGbwihnOWccf1wyKMN_pigg5QLJlTOuRaFviArLtdlppUWV-Q6xgNjTHPBV8R9poD9PjU0Jqh869NEIdHG7xuasDtigDQGjLQeAgXnfPInbCfaQT_WYBfNUWjHzvewMPPdUxhjwn5G7Sy1w3RLLmtoI9793hvy_fL8tX3Ldh-v79vHXWaFYCmTWrC5QqwlYA1qw8sNMKvqyipWrV2FUCpRKa4d28wOdBJcKYHLWslCy0rekPtz7hCTN9H6hLaxQ9-jTUYoURZKzlBxhmwYYgxYm2PwHYTJcGaWGc3B_M1olhnNecbZ-nS24vzEyWNYOrC36HxYKtzg_w_5ARsMhgc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hyer, Holden C. ; Dryepondt, Sebastien ; Su, Yi-Feng ; Yamamoto, Yukinori ; Pint, Bruce A. ; Massey, Caleb P.</creator><creatorcontrib>Hyer, Holden C. ; Dryepondt, Sebastien ; Su, Yi-Feng ; Yamamoto, Yukinori ; Pint, Bruce A. ; Massey, Caleb P. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Several fast-spectrum nuclear reactors designed to generate high power (∼450 MWe) rely on forced convection of media such as supercritical CO2, sodium, or liquid lead to cool the nuclear core, operating at temperatures up to 600 °C. Cost-effective, high-strength Fe-based alumina forming austenitic (AFA) alloys are a promising candidate for the fabrication of critical nuclear components. This study investigated laser powder bed fusion (LPBF) processing of an AFA alloy composition optimized for improved creep resistance. Electron microscopy revealed an elongated grain structure along the build direction with a fine sub-grain cellular structure decorated with (Cr,Fe,Nb)23C6 carbide precipitates at the intercellular boundaries. At temperatures of 20–900 °C, the LPBF alloy's superior tensile properties compared to its arc-melted counterpart and other advanced steels (e.g., SS316) were attributed to the distribution of nano-sized carbide precipitates, whereas the high ductility was attributed to the LPBF alloy's elongated grain structure.
[Display omitted]</description><identifier>ISSN: 1359-6462</identifier><identifier>DOI: 10.1016/j.scriptamat.2024.116286</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Alumina former ; Calphad ; High temperature strength ; Laser powder bed fusion ; Lead fast reactors ; MATERIALS SCIENCE</subject><ispartof>Scripta materialia, 2024-12, Vol.253, p.116286, Article 116286</ispartof><rights>2024 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-3620add253aefa47197a0c4fbc40b5dbea942b416d07c22ed3ad93a13f43863b3</cites><orcidid>0000-0003-4391-5561 ; 0000-0003-4574-4890 ; 0000000312651612 ; 0000000343915561 ; 0000000345744890 ; 0000000291653335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scriptamat.2024.116286$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2429843$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyer, Holden C.</creatorcontrib><creatorcontrib>Dryepondt, Sebastien</creatorcontrib><creatorcontrib>Su, Yi-Feng</creatorcontrib><creatorcontrib>Yamamoto, Yukinori</creatorcontrib><creatorcontrib>Pint, Bruce A.</creatorcontrib><creatorcontrib>Massey, Caleb P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy</title><title>Scripta materialia</title><description>Several fast-spectrum nuclear reactors designed to generate high power (∼450 MWe) rely on forced convection of media such as supercritical CO2, sodium, or liquid lead to cool the nuclear core, operating at temperatures up to 600 °C. Cost-effective, high-strength Fe-based alumina forming austenitic (AFA) alloys are a promising candidate for the fabrication of critical nuclear components. This study investigated laser powder bed fusion (LPBF) processing of an AFA alloy composition optimized for improved creep resistance. Electron microscopy revealed an elongated grain structure along the build direction with a fine sub-grain cellular structure decorated with (Cr,Fe,Nb)23C6 carbide precipitates at the intercellular boundaries. At temperatures of 20–900 °C, the LPBF alloy's superior tensile properties compared to its arc-melted counterpart and other advanced steels (e.g., SS316) were attributed to the distribution of nano-sized carbide precipitates, whereas the high ductility was attributed to the LPBF alloy's elongated grain structure.
[Display omitted]</description><subject>Alumina former</subject><subject>Calphad</subject><subject>High temperature strength</subject><subject>Laser powder bed fusion</subject><subject>Lead fast reactors</subject><subject>MATERIALS SCIENCE</subject><issn>1359-6462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkElPwzAUhH0AibL8B4t7gre6yREqNqkSB-Bsvdgvjassle1Uyr8nUZE4cnqH-WZGbwihnOWccf1wyKMN_pigg5QLJlTOuRaFviArLtdlppUWV-Q6xgNjTHPBV8R9poD9PjU0Jqh869NEIdHG7xuasDtigDQGjLQeAgXnfPInbCfaQT_WYBfNUWjHzvewMPPdUxhjwn5G7Sy1w3RLLmtoI9793hvy_fL8tX3Ldh-v79vHXWaFYCmTWrC5QqwlYA1qw8sNMKvqyipWrV2FUCpRKa4d28wOdBJcKYHLWslCy0rekPtz7hCTN9H6hLaxQ9-jTUYoURZKzlBxhmwYYgxYm2PwHYTJcGaWGc3B_M1olhnNecbZ-nS24vzEyWNYOrC36HxYKtzg_w_5ARsMhgc</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Hyer, Holden C.</creator><creator>Dryepondt, Sebastien</creator><creator>Su, Yi-Feng</creator><creator>Yamamoto, Yukinori</creator><creator>Pint, Bruce A.</creator><creator>Massey, Caleb P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4391-5561</orcidid><orcidid>https://orcid.org/0000-0003-4574-4890</orcidid><orcidid>https://orcid.org/0000000312651612</orcidid><orcidid>https://orcid.org/0000000343915561</orcidid><orcidid>https://orcid.org/0000000345744890</orcidid><orcidid>https://orcid.org/0000000291653335</orcidid></search><sort><creationdate>20241201</creationdate><title>Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy</title><author>Hyer, Holden C. ; Dryepondt, Sebastien ; Su, Yi-Feng ; Yamamoto, Yukinori ; Pint, Bruce A. ; Massey, Caleb P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-3620add253aefa47197a0c4fbc40b5dbea942b416d07c22ed3ad93a13f43863b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alumina former</topic><topic>Calphad</topic><topic>High temperature strength</topic><topic>Laser powder bed fusion</topic><topic>Lead fast reactors</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyer, Holden C.</creatorcontrib><creatorcontrib>Dryepondt, Sebastien</creatorcontrib><creatorcontrib>Su, Yi-Feng</creatorcontrib><creatorcontrib>Yamamoto, Yukinori</creatorcontrib><creatorcontrib>Pint, Bruce A.</creatorcontrib><creatorcontrib>Massey, Caleb P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Scripta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyer, Holden C.</au><au>Dryepondt, Sebastien</au><au>Su, Yi-Feng</au><au>Yamamoto, Yukinori</au><au>Pint, Bruce A.</au><au>Massey, Caleb P.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy</atitle><jtitle>Scripta materialia</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>253</volume><spage>116286</spage><pages>116286-</pages><artnum>116286</artnum><issn>1359-6462</issn><abstract>Several fast-spectrum nuclear reactors designed to generate high power (∼450 MWe) rely on forced convection of media such as supercritical CO2, sodium, or liquid lead to cool the nuclear core, operating at temperatures up to 600 °C. Cost-effective, high-strength Fe-based alumina forming austenitic (AFA) alloys are a promising candidate for the fabrication of critical nuclear components. This study investigated laser powder bed fusion (LPBF) processing of an AFA alloy composition optimized for improved creep resistance. Electron microscopy revealed an elongated grain structure along the build direction with a fine sub-grain cellular structure decorated with (Cr,Fe,Nb)23C6 carbide precipitates at the intercellular boundaries. At temperatures of 20–900 °C, the LPBF alloy's superior tensile properties compared to its arc-melted counterpart and other advanced steels (e.g., SS316) were attributed to the distribution of nano-sized carbide precipitates, whereas the high ductility was attributed to the LPBF alloy's elongated grain structure.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.scriptamat.2024.116286</doi><orcidid>https://orcid.org/0000-0003-4391-5561</orcidid><orcidid>https://orcid.org/0000-0003-4574-4890</orcidid><orcidid>https://orcid.org/0000000312651612</orcidid><orcidid>https://orcid.org/0000000343915561</orcidid><orcidid>https://orcid.org/0000000345744890</orcidid><orcidid>https://orcid.org/0000000291653335</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6462 |
ispartof | Scripta materialia, 2024-12, Vol.253, p.116286, Article 116286 |
issn | 1359-6462 |
language | eng |
recordid | cdi_osti_scitechconnect_2429843 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alumina former Calphad High temperature strength Laser powder bed fusion Lead fast reactors MATERIALS SCIENCE |
title | Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength%20stability%20at%20high%20temperatures%20for%20additively%20manufactured%20alumina%20forming%20austenitic%20alloy&rft.jtitle=Scripta%20materialia&rft.au=Hyer,%20Holden%20C.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-12-01&rft.volume=253&rft.spage=116286&rft.pages=116286-&rft.artnum=116286&rft.issn=1359-6462&rft_id=info:doi/10.1016/j.scriptamat.2024.116286&rft_dat=%3Celsevier_osti_%3ES135964622400321X%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S135964622400321X&rfr_iscdi=true |