Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy

Several fast-spectrum nuclear reactors designed to generate high power (∼450 MWe) rely on forced convection of media such as supercritical CO2, sodium, or liquid lead to cool the nuclear core, operating at temperatures up to 600 °C. Cost-effective, high-strength Fe-based alumina forming austenitic (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scripta materialia 2024-12, Vol.253, p.116286, Article 116286
Hauptverfasser: Hyer, Holden C., Dryepondt, Sebastien, Su, Yi-Feng, Yamamoto, Yukinori, Pint, Bruce A., Massey, Caleb P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116286
container_title Scripta materialia
container_volume 253
creator Hyer, Holden C.
Dryepondt, Sebastien
Su, Yi-Feng
Yamamoto, Yukinori
Pint, Bruce A.
Massey, Caleb P.
description Several fast-spectrum nuclear reactors designed to generate high power (∼450 MWe) rely on forced convection of media such as supercritical CO2, sodium, or liquid lead to cool the nuclear core, operating at temperatures up to 600 °C. Cost-effective, high-strength Fe-based alumina forming austenitic (AFA) alloys are a promising candidate for the fabrication of critical nuclear components. This study investigated laser powder bed fusion (LPBF) processing of an AFA alloy composition optimized for improved creep resistance. Electron microscopy revealed an elongated grain structure along the build direction with a fine sub-grain cellular structure decorated with (Cr,Fe,Nb)23C6 carbide precipitates at the intercellular boundaries. At temperatures of 20–900 °C, the LPBF alloy's superior tensile properties compared to its arc-melted counterpart and other advanced steels (e.g., SS316) were attributed to the distribution of nano-sized carbide precipitates, whereas the high ductility was attributed to the LPBF alloy's elongated grain structure. [Display omitted]
doi_str_mv 10.1016/j.scriptamat.2024.116286
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2429843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964622400321X</els_id><sourcerecordid>S135964622400321X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-3620add253aefa47197a0c4fbc40b5dbea942b416d07c22ed3ad93a13f43863b3</originalsourceid><addsrcrecordid>eNqFkElPwzAUhH0AibL8B4t7gre6yREqNqkSB-Bsvdgvjassle1Uyr8nUZE4cnqH-WZGbwihnOWccf1wyKMN_pigg5QLJlTOuRaFviArLtdlppUWV-Q6xgNjTHPBV8R9poD9PjU0Jqh869NEIdHG7xuasDtigDQGjLQeAgXnfPInbCfaQT_WYBfNUWjHzvewMPPdUxhjwn5G7Sy1w3RLLmtoI9793hvy_fL8tX3Ldh-v79vHXWaFYCmTWrC5QqwlYA1qw8sNMKvqyipWrV2FUCpRKa4d28wOdBJcKYHLWslCy0rekPtz7hCTN9H6hLaxQ9-jTUYoURZKzlBxhmwYYgxYm2PwHYTJcGaWGc3B_M1olhnNecbZ-nS24vzEyWNYOrC36HxYKtzg_w_5ARsMhgc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hyer, Holden C. ; Dryepondt, Sebastien ; Su, Yi-Feng ; Yamamoto, Yukinori ; Pint, Bruce A. ; Massey, Caleb P.</creator><creatorcontrib>Hyer, Holden C. ; Dryepondt, Sebastien ; Su, Yi-Feng ; Yamamoto, Yukinori ; Pint, Bruce A. ; Massey, Caleb P. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Several fast-spectrum nuclear reactors designed to generate high power (∼450 MWe) rely on forced convection of media such as supercritical CO2, sodium, or liquid lead to cool the nuclear core, operating at temperatures up to 600 °C. Cost-effective, high-strength Fe-based alumina forming austenitic (AFA) alloys are a promising candidate for the fabrication of critical nuclear components. This study investigated laser powder bed fusion (LPBF) processing of an AFA alloy composition optimized for improved creep resistance. Electron microscopy revealed an elongated grain structure along the build direction with a fine sub-grain cellular structure decorated with (Cr,Fe,Nb)23C6 carbide precipitates at the intercellular boundaries. At temperatures of 20–900 °C, the LPBF alloy's superior tensile properties compared to its arc-melted counterpart and other advanced steels (e.g., SS316) were attributed to the distribution of nano-sized carbide precipitates, whereas the high ductility was attributed to the LPBF alloy's elongated grain structure. [Display omitted]</description><identifier>ISSN: 1359-6462</identifier><identifier>DOI: 10.1016/j.scriptamat.2024.116286</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Alumina former ; Calphad ; High temperature strength ; Laser powder bed fusion ; Lead fast reactors ; MATERIALS SCIENCE</subject><ispartof>Scripta materialia, 2024-12, Vol.253, p.116286, Article 116286</ispartof><rights>2024 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-3620add253aefa47197a0c4fbc40b5dbea942b416d07c22ed3ad93a13f43863b3</cites><orcidid>0000-0003-4391-5561 ; 0000-0003-4574-4890 ; 0000000312651612 ; 0000000343915561 ; 0000000345744890 ; 0000000291653335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scriptamat.2024.116286$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2429843$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyer, Holden C.</creatorcontrib><creatorcontrib>Dryepondt, Sebastien</creatorcontrib><creatorcontrib>Su, Yi-Feng</creatorcontrib><creatorcontrib>Yamamoto, Yukinori</creatorcontrib><creatorcontrib>Pint, Bruce A.</creatorcontrib><creatorcontrib>Massey, Caleb P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy</title><title>Scripta materialia</title><description>Several fast-spectrum nuclear reactors designed to generate high power (∼450 MWe) rely on forced convection of media such as supercritical CO2, sodium, or liquid lead to cool the nuclear core, operating at temperatures up to 600 °C. Cost-effective, high-strength Fe-based alumina forming austenitic (AFA) alloys are a promising candidate for the fabrication of critical nuclear components. This study investigated laser powder bed fusion (LPBF) processing of an AFA alloy composition optimized for improved creep resistance. Electron microscopy revealed an elongated grain structure along the build direction with a fine sub-grain cellular structure decorated with (Cr,Fe,Nb)23C6 carbide precipitates at the intercellular boundaries. At temperatures of 20–900 °C, the LPBF alloy's superior tensile properties compared to its arc-melted counterpart and other advanced steels (e.g., SS316) were attributed to the distribution of nano-sized carbide precipitates, whereas the high ductility was attributed to the LPBF alloy's elongated grain structure. [Display omitted]</description><subject>Alumina former</subject><subject>Calphad</subject><subject>High temperature strength</subject><subject>Laser powder bed fusion</subject><subject>Lead fast reactors</subject><subject>MATERIALS SCIENCE</subject><issn>1359-6462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkElPwzAUhH0AibL8B4t7gre6yREqNqkSB-Bsvdgvjassle1Uyr8nUZE4cnqH-WZGbwihnOWccf1wyKMN_pigg5QLJlTOuRaFviArLtdlppUWV-Q6xgNjTHPBV8R9poD9PjU0Jqh869NEIdHG7xuasDtigDQGjLQeAgXnfPInbCfaQT_WYBfNUWjHzvewMPPdUxhjwn5G7Sy1w3RLLmtoI9793hvy_fL8tX3Ldh-v79vHXWaFYCmTWrC5QqwlYA1qw8sNMKvqyipWrV2FUCpRKa4d28wOdBJcKYHLWslCy0rekPtz7hCTN9H6hLaxQ9-jTUYoURZKzlBxhmwYYgxYm2PwHYTJcGaWGc3B_M1olhnNecbZ-nS24vzEyWNYOrC36HxYKtzg_w_5ARsMhgc</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Hyer, Holden C.</creator><creator>Dryepondt, Sebastien</creator><creator>Su, Yi-Feng</creator><creator>Yamamoto, Yukinori</creator><creator>Pint, Bruce A.</creator><creator>Massey, Caleb P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4391-5561</orcidid><orcidid>https://orcid.org/0000-0003-4574-4890</orcidid><orcidid>https://orcid.org/0000000312651612</orcidid><orcidid>https://orcid.org/0000000343915561</orcidid><orcidid>https://orcid.org/0000000345744890</orcidid><orcidid>https://orcid.org/0000000291653335</orcidid></search><sort><creationdate>20241201</creationdate><title>Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy</title><author>Hyer, Holden C. ; Dryepondt, Sebastien ; Su, Yi-Feng ; Yamamoto, Yukinori ; Pint, Bruce A. ; Massey, Caleb P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-3620add253aefa47197a0c4fbc40b5dbea942b416d07c22ed3ad93a13f43863b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alumina former</topic><topic>Calphad</topic><topic>High temperature strength</topic><topic>Laser powder bed fusion</topic><topic>Lead fast reactors</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyer, Holden C.</creatorcontrib><creatorcontrib>Dryepondt, Sebastien</creatorcontrib><creatorcontrib>Su, Yi-Feng</creatorcontrib><creatorcontrib>Yamamoto, Yukinori</creatorcontrib><creatorcontrib>Pint, Bruce A.</creatorcontrib><creatorcontrib>Massey, Caleb P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Scripta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyer, Holden C.</au><au>Dryepondt, Sebastien</au><au>Su, Yi-Feng</au><au>Yamamoto, Yukinori</au><au>Pint, Bruce A.</au><au>Massey, Caleb P.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy</atitle><jtitle>Scripta materialia</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>253</volume><spage>116286</spage><pages>116286-</pages><artnum>116286</artnum><issn>1359-6462</issn><abstract>Several fast-spectrum nuclear reactors designed to generate high power (∼450 MWe) rely on forced convection of media such as supercritical CO2, sodium, or liquid lead to cool the nuclear core, operating at temperatures up to 600 °C. Cost-effective, high-strength Fe-based alumina forming austenitic (AFA) alloys are a promising candidate for the fabrication of critical nuclear components. This study investigated laser powder bed fusion (LPBF) processing of an AFA alloy composition optimized for improved creep resistance. Electron microscopy revealed an elongated grain structure along the build direction with a fine sub-grain cellular structure decorated with (Cr,Fe,Nb)23C6 carbide precipitates at the intercellular boundaries. At temperatures of 20–900 °C, the LPBF alloy's superior tensile properties compared to its arc-melted counterpart and other advanced steels (e.g., SS316) were attributed to the distribution of nano-sized carbide precipitates, whereas the high ductility was attributed to the LPBF alloy's elongated grain structure. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.scriptamat.2024.116286</doi><orcidid>https://orcid.org/0000-0003-4391-5561</orcidid><orcidid>https://orcid.org/0000-0003-4574-4890</orcidid><orcidid>https://orcid.org/0000000312651612</orcidid><orcidid>https://orcid.org/0000000343915561</orcidid><orcidid>https://orcid.org/0000000345744890</orcidid><orcidid>https://orcid.org/0000000291653335</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6462
ispartof Scripta materialia, 2024-12, Vol.253, p.116286, Article 116286
issn 1359-6462
language eng
recordid cdi_osti_scitechconnect_2429843
source Access via ScienceDirect (Elsevier)
subjects Alumina former
Calphad
High temperature strength
Laser powder bed fusion
Lead fast reactors
MATERIALS SCIENCE
title Strength stability at high temperatures for additively manufactured alumina forming austenitic alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength%20stability%20at%20high%20temperatures%20for%20additively%20manufactured%20alumina%20forming%20austenitic%20alloy&rft.jtitle=Scripta%20materialia&rft.au=Hyer,%20Holden%20C.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-12-01&rft.volume=253&rft.spage=116286&rft.pages=116286-&rft.artnum=116286&rft.issn=1359-6462&rft_id=info:doi/10.1016/j.scriptamat.2024.116286&rft_dat=%3Celsevier_osti_%3ES135964622400321X%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S135964622400321X&rfr_iscdi=true