Dark sink enhances the direct detection of freeze-in dark matter

We describe a simple dark sector structure which, if present, has implications for the direct detection of dark matter (DM); . A dark sink transports energy density from the DM into light dark-sector states that do not appreciably contribute to the DM density. As an example, we consider a light, neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2024-08, Vol.110 (3), Article L031702
Hauptverfasser: Bhattiprolu, Prudhvi N., McGehee, Robert, Pierce, Aaron
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physical review. D
container_volume 110
creator Bhattiprolu, Prudhvi N.
McGehee, Robert
Pierce, Aaron
description We describe a simple dark sector structure which, if present, has implications for the direct detection of dark matter (DM); . A dark sink transports energy density from the DM into light dark-sector states that do not appreciably contribute to the DM density. As an example, we consider a light, neutral fermion ψ which interacts solely with DM χ via the exchange of a heavy scalar Φ . We illustrate the impact of a dark sink by adding one to a DM freeze-in model in which χ couples to a light dark photon γ ′ which kinetically mixes with the Standard Model (SM) photon. This freeze-in model (absent the sink) is itself a benchmark for ongoing experiments. In some cases, the literature for this benchmark has contained errors; we correct the predictions and provide them as a public code. We then analyze how the dark sink modifies this benchmark, solving coupled Boltzmann equations for the dark-sector energy density and DM yield. We check the contribution of the dark sink ψ ’s to dark radiation; consistency with existing data limits the maximum attainable cross section. For DM with a mass between MeV − O ( 10     GeV ) , adding the dark sink can increase predictions for the direct detection cross section all the way up to the current limits.
doi_str_mv 10.1103/PhysRevD.110.L031702
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2429010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_110_L031702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-6aa960594bb9a10f0792fa10b9c323ffca1fa1b0e4f7773a2dd19a551596d3ed3</originalsourceid><addsrcrecordid>eNo9UE1LAzEUDKJgqf0HHoL3rS_J7obclNYvKCii55BNXthYuytJEOqvN0urp5mBeY-ZIeSSwZIxENcv_T694vd6UssNCCaBn5AZryVUAFyd_nMG52SR0gcU2oKSjM3IzdrELU1h2FIcejNYTDT3SF2IaDN1mAuEcaCjpz4i_mAVBuqmo53JGeMFOfPmM-HiiHPyfn_3tnqsNs8PT6vbTWU5iFy1xqgWGlV3nTIMPEjFfSGdsoIL761hRXaAtZdSCsOdY8o0DWtU6wQ6MSdXh79jykEnG0qw3o7DUPJpXnNV6hVTfTDZOKYU0euvGHYm7jUDPa2l_9aalD6uJX4Bvtteiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dark sink enhances the direct detection of freeze-in dark matter</title><source>American Physical Society Journals</source><creator>Bhattiprolu, Prudhvi N. ; McGehee, Robert ; Pierce, Aaron</creator><creatorcontrib>Bhattiprolu, Prudhvi N. ; McGehee, Robert ; Pierce, Aaron</creatorcontrib><description>We describe a simple dark sector structure which, if present, has implications for the direct detection of dark matter (DM); . A dark sink transports energy density from the DM into light dark-sector states that do not appreciably contribute to the DM density. As an example, we consider a light, neutral fermion ψ which interacts solely with DM χ via the exchange of a heavy scalar Φ . We illustrate the impact of a dark sink by adding one to a DM freeze-in model in which χ couples to a light dark photon γ ′ which kinetically mixes with the Standard Model (SM) photon. This freeze-in model (absent the sink) is itself a benchmark for ongoing experiments. In some cases, the literature for this benchmark has contained errors; we correct the predictions and provide them as a public code. We then analyze how the dark sink modifies this benchmark, solving coupled Boltzmann equations for the dark-sector energy density and DM yield. We check the contribution of the dark sink ψ ’s to dark radiation; consistency with existing data limits the maximum attainable cross section. For DM with a mass between MeV − O ( 10     GeV ) , adding the dark sink can increase predictions for the direct detection cross section all the way up to the current limits.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.110.L031702</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review. D, 2024-08, Vol.110 (3), Article L031702</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c203t-6aa960594bb9a10f0792fa10b9c323ffca1fa1b0e4f7773a2dd19a551596d3ed3</cites><orcidid>0000-0003-1819-1733 ; 0000-0002-6238-7429 ; 0000-0002-9265-0494 ; 0000000262387429 ; 0000000292650494 ; 0000000318191733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2429010$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattiprolu, Prudhvi N.</creatorcontrib><creatorcontrib>McGehee, Robert</creatorcontrib><creatorcontrib>Pierce, Aaron</creatorcontrib><title>Dark sink enhances the direct detection of freeze-in dark matter</title><title>Physical review. D</title><description>We describe a simple dark sector structure which, if present, has implications for the direct detection of dark matter (DM); . A dark sink transports energy density from the DM into light dark-sector states that do not appreciably contribute to the DM density. As an example, we consider a light, neutral fermion ψ which interacts solely with DM χ via the exchange of a heavy scalar Φ . We illustrate the impact of a dark sink by adding one to a DM freeze-in model in which χ couples to a light dark photon γ ′ which kinetically mixes with the Standard Model (SM) photon. This freeze-in model (absent the sink) is itself a benchmark for ongoing experiments. In some cases, the literature for this benchmark has contained errors; we correct the predictions and provide them as a public code. We then analyze how the dark sink modifies this benchmark, solving coupled Boltzmann equations for the dark-sector energy density and DM yield. We check the contribution of the dark sink ψ ’s to dark radiation; consistency with existing data limits the maximum attainable cross section. For DM with a mass between MeV − O ( 10     GeV ) , adding the dark sink can increase predictions for the direct detection cross section all the way up to the current limits.</description><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEUDKJgqf0HHoL3rS_J7obclNYvKCii55BNXthYuytJEOqvN0urp5mBeY-ZIeSSwZIxENcv_T694vd6UssNCCaBn5AZryVUAFyd_nMG52SR0gcU2oKSjM3IzdrELU1h2FIcejNYTDT3SF2IaDN1mAuEcaCjpz4i_mAVBuqmo53JGeMFOfPmM-HiiHPyfn_3tnqsNs8PT6vbTWU5iFy1xqgWGlV3nTIMPEjFfSGdsoIL761hRXaAtZdSCsOdY8o0DWtU6wQ6MSdXh79jykEnG0qw3o7DUPJpXnNV6hVTfTDZOKYU0euvGHYm7jUDPa2l_9aalD6uJX4Bvtteiw</recordid><startdate>20240812</startdate><enddate>20240812</enddate><creator>Bhattiprolu, Prudhvi N.</creator><creator>McGehee, Robert</creator><creator>Pierce, Aaron</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1819-1733</orcidid><orcidid>https://orcid.org/0000-0002-6238-7429</orcidid><orcidid>https://orcid.org/0000-0002-9265-0494</orcidid><orcidid>https://orcid.org/0000000262387429</orcidid><orcidid>https://orcid.org/0000000292650494</orcidid><orcidid>https://orcid.org/0000000318191733</orcidid></search><sort><creationdate>20240812</creationdate><title>Dark sink enhances the direct detection of freeze-in dark matter</title><author>Bhattiprolu, Prudhvi N. ; McGehee, Robert ; Pierce, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-6aa960594bb9a10f0792fa10b9c323ffca1fa1b0e4f7773a2dd19a551596d3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattiprolu, Prudhvi N.</creatorcontrib><creatorcontrib>McGehee, Robert</creatorcontrib><creatorcontrib>Pierce, Aaron</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattiprolu, Prudhvi N.</au><au>McGehee, Robert</au><au>Pierce, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark sink enhances the direct detection of freeze-in dark matter</atitle><jtitle>Physical review. D</jtitle><date>2024-08-12</date><risdate>2024</risdate><volume>110</volume><issue>3</issue><artnum>L031702</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We describe a simple dark sector structure which, if present, has implications for the direct detection of dark matter (DM); . A dark sink transports energy density from the DM into light dark-sector states that do not appreciably contribute to the DM density. As an example, we consider a light, neutral fermion ψ which interacts solely with DM χ via the exchange of a heavy scalar Φ . We illustrate the impact of a dark sink by adding one to a DM freeze-in model in which χ couples to a light dark photon γ ′ which kinetically mixes with the Standard Model (SM) photon. This freeze-in model (absent the sink) is itself a benchmark for ongoing experiments. In some cases, the literature for this benchmark has contained errors; we correct the predictions and provide them as a public code. We then analyze how the dark sink modifies this benchmark, solving coupled Boltzmann equations for the dark-sector energy density and DM yield. We check the contribution of the dark sink ψ ’s to dark radiation; consistency with existing data limits the maximum attainable cross section. For DM with a mass between MeV − O ( 10     GeV ) , adding the dark sink can increase predictions for the direct detection cross section all the way up to the current limits.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.110.L031702</doi><orcidid>https://orcid.org/0000-0003-1819-1733</orcidid><orcidid>https://orcid.org/0000-0002-6238-7429</orcidid><orcidid>https://orcid.org/0000-0002-9265-0494</orcidid><orcidid>https://orcid.org/0000000262387429</orcidid><orcidid>https://orcid.org/0000000292650494</orcidid><orcidid>https://orcid.org/0000000318191733</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2024-08, Vol.110 (3), Article L031702
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_2429010
source American Physical Society Journals
title Dark sink enhances the direct detection of freeze-in dark matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark%20sink%20enhances%20the%20direct%20detection%20of%20freeze-in%20dark%20matter&rft.jtitle=Physical%20review.%20D&rft.au=Bhattiprolu,%20Prudhvi%20N.&rft.date=2024-08-12&rft.volume=110&rft.issue=3&rft.artnum=L031702&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.110.L031702&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_110_L031702%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true