Decoding Li+/Na+ Exchange Route Toward High‐Performance Mn‐Based Layered Cathodes for Li‐Ion Batteries
Li+/Na+ exchange has been extensively explored as an effective method to prepare high‐performance Mn‐based layered cathodes for Li‐ion batteries, since the first report in 1996 by P. G. Bruce (Nature, 1996. 381, 499–500). Understanding the detailed structural changes during the ion‐exchange process...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-05, Vol.33 (20), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Cao, Bo Chen, Zhefeng Cao, Hongbin Zhu, Chen Yang, Hongkai Li, Tianyi Xu, Wenqian Pan, Feng Zhang, Mingjian |
description | Li+/Na+ exchange has been extensively explored as an effective method to prepare high‐performance Mn‐based layered cathodes for Li‐ion batteries, since the first report in 1996 by P. G. Bruce (Nature, 1996. 381, 499–500). Understanding the detailed structural changes during the ion‐exchange process is crucial to implement the synthetic control of high‐performance layered Mn‐based cathodes, but less studied. Herein, in situ synchrotron X‐ray diffraction, density functional theory calculations, and electrochemical tests are combined to conduct the systemic studies into the structural changes during the ion‐exchange process of an Mn‐only layered cathode O3‐type Li0.67[Li0.22Mn0.78]O2 (LLMO) from the corresponding counterpart P3‐type Na0.67[Li0.22Mn0.78]O2 (NLMO). The temperature‐resolved observations combined with theoretical calculations reveal that the Li+/Na+ exchange is favorable thermodynamically and composited with two tandem topotactic phase transitions: 1) from NLMO to a layered intermediate through ≈60% of Li+/Na+ exchange. 2) then to the final layered product LLMO through further Li insertion. Moreover, the intermediate‐dominate composite is obtained by slowing down the exchange kinetics below room temperature, showing better electrochemical performance than LLMO obtained by the traditional molten‐salt method. The findings provide guides for the synthetic control of high‐performance Mn‐based cathodes under mild conditions.
The temperature‐resolved synchrotron X‐ray diffraction combined with density functional theory calculations are employed to study the Li+/Na+ exchange kinetics. It reveals two tandem topotactic phase transformations thermodynamically favorable, and then guides to obtain high‐performance Mn‐based layered oxides for Li‐ion batteries at mild conditions by tuning the synthetic kinetics. |
doi_str_mv | 10.1002/adfm.202214921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2427998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812884205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3441-68b2d7b9695d75be70bcde30ac0e623b1c7b6951e979ce5a0f3b138a2f27005d3</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhSdGExHdum50SYC289OZJb9CAmoMJu6aTnuHGQJTbIcgOx_BZ_RJLBmDS1f35tzvnNwcz7sluEMwpl2hsk2HYkpJkFBy5jVIRKK2j2l8ftrJ26V3Ze0KY8KYHzS89RCkVkW5RLOi1X0ULTT6kLkol4Be9K4CtNB7YRSaFMv8-_PrGUymzUaUEtC8dEJfWFBoJg5g3ByIKtcKLHKQC3T3qS5RX1QVmALstXeRibWFm9_Z9F7Ho8Vg0p49PUwHvVlb-kFA2lGcUsXSJEpCxcIUGE6lAh8LiSGifkokS92NQMISCaHAmdP8WNCMMoxD5Te9uzpX26rgVhYVyFzqsgRZcRpQliSxg-5raGv0-w5sxVd6Z0r3F6cxoXEcUBw6qlNT0mhrDWR8a4qNMAdOMD_Wzo-181PtzpDUhn2xhsM_NO8Nx_M_7w8XP4fv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812884205</pqid></control><display><type>article</type><title>Decoding Li+/Na+ Exchange Route Toward High‐Performance Mn‐Based Layered Cathodes for Li‐Ion Batteries</title><source>Wiley Online Library All Journals</source><creator>Cao, Bo ; Chen, Zhefeng ; Cao, Hongbin ; Zhu, Chen ; Yang, Hongkai ; Li, Tianyi ; Xu, Wenqian ; Pan, Feng ; Zhang, Mingjian</creator><creatorcontrib>Cao, Bo ; Chen, Zhefeng ; Cao, Hongbin ; Zhu, Chen ; Yang, Hongkai ; Li, Tianyi ; Xu, Wenqian ; Pan, Feng ; Zhang, Mingjian ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Li+/Na+ exchange has been extensively explored as an effective method to prepare high‐performance Mn‐based layered cathodes for Li‐ion batteries, since the first report in 1996 by P. G. Bruce (Nature, 1996. 381, 499–500). Understanding the detailed structural changes during the ion‐exchange process is crucial to implement the synthetic control of high‐performance layered Mn‐based cathodes, but less studied. Herein, in situ synchrotron X‐ray diffraction, density functional theory calculations, and electrochemical tests are combined to conduct the systemic studies into the structural changes during the ion‐exchange process of an Mn‐only layered cathode O3‐type Li0.67[Li0.22Mn0.78]O2 (LLMO) from the corresponding counterpart P3‐type Na0.67[Li0.22Mn0.78]O2 (NLMO). The temperature‐resolved observations combined with theoretical calculations reveal that the Li+/Na+ exchange is favorable thermodynamically and composited with two tandem topotactic phase transitions: 1) from NLMO to a layered intermediate through ≈60% of Li+/Na+ exchange. 2) then to the final layered product LLMO through further Li insertion. Moreover, the intermediate‐dominate composite is obtained by slowing down the exchange kinetics below room temperature, showing better electrochemical performance than LLMO obtained by the traditional molten‐salt method. The findings provide guides for the synthetic control of high‐performance Mn‐based cathodes under mild conditions.
The temperature‐resolved synchrotron X‐ray diffraction combined with density functional theory calculations are employed to study the Li+/Na+ exchange kinetics. It reveals two tandem topotactic phase transformations thermodynamically favorable, and then guides to obtain high‐performance Mn‐based layered oxides for Li‐ion batteries at mild conditions by tuning the synthetic kinetics.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202214921</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Density functional theory ; Electrochemical analysis ; ENERGY STORAGE ; layered intermediate ; Li +/Na + ion‐exchanges ; Lithium-ion batteries ; Materials science ; Mathematical analysis ; Mn-based layered cathodes ; Phase transitions ; Room temperature ; Sodium ; Synchrotrons ; two-step phase transformations</subject><ispartof>Advanced functional materials, 2023-05, Vol.33 (20), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3441-68b2d7b9695d75be70bcde30ac0e623b1c7b6951e979ce5a0f3b138a2f27005d3</citedby><cites>FETCH-LOGICAL-c3441-68b2d7b9695d75be70bcde30ac0e623b1c7b6951e979ce5a0f3b138a2f27005d3</cites><orcidid>0000-0002-1362-4336 ; 0000-0002-6843-5911 ; 0000000213624336 ; 0000000268435911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202214921$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202214921$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2427998$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Bo</creatorcontrib><creatorcontrib>Chen, Zhefeng</creatorcontrib><creatorcontrib>Cao, Hongbin</creatorcontrib><creatorcontrib>Zhu, Chen</creatorcontrib><creatorcontrib>Yang, Hongkai</creatorcontrib><creatorcontrib>Li, Tianyi</creatorcontrib><creatorcontrib>Xu, Wenqian</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Decoding Li+/Na+ Exchange Route Toward High‐Performance Mn‐Based Layered Cathodes for Li‐Ion Batteries</title><title>Advanced functional materials</title><description>Li+/Na+ exchange has been extensively explored as an effective method to prepare high‐performance Mn‐based layered cathodes for Li‐ion batteries, since the first report in 1996 by P. G. Bruce (Nature, 1996. 381, 499–500). Understanding the detailed structural changes during the ion‐exchange process is crucial to implement the synthetic control of high‐performance layered Mn‐based cathodes, but less studied. Herein, in situ synchrotron X‐ray diffraction, density functional theory calculations, and electrochemical tests are combined to conduct the systemic studies into the structural changes during the ion‐exchange process of an Mn‐only layered cathode O3‐type Li0.67[Li0.22Mn0.78]O2 (LLMO) from the corresponding counterpart P3‐type Na0.67[Li0.22Mn0.78]O2 (NLMO). The temperature‐resolved observations combined with theoretical calculations reveal that the Li+/Na+ exchange is favorable thermodynamically and composited with two tandem topotactic phase transitions: 1) from NLMO to a layered intermediate through ≈60% of Li+/Na+ exchange. 2) then to the final layered product LLMO through further Li insertion. Moreover, the intermediate‐dominate composite is obtained by slowing down the exchange kinetics below room temperature, showing better electrochemical performance than LLMO obtained by the traditional molten‐salt method. The findings provide guides for the synthetic control of high‐performance Mn‐based cathodes under mild conditions.
The temperature‐resolved synchrotron X‐ray diffraction combined with density functional theory calculations are employed to study the Li+/Na+ exchange kinetics. It reveals two tandem topotactic phase transformations thermodynamically favorable, and then guides to obtain high‐performance Mn‐based layered oxides for Li‐ion batteries at mild conditions by tuning the synthetic kinetics.</description><subject>Cathodes</subject><subject>Density functional theory</subject><subject>Electrochemical analysis</subject><subject>ENERGY STORAGE</subject><subject>layered intermediate</subject><subject>Li +/Na + ion‐exchanges</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mn-based layered cathodes</subject><subject>Phase transitions</subject><subject>Room temperature</subject><subject>Sodium</subject><subject>Synchrotrons</subject><subject>two-step phase transformations</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEUhSdGExHdum50SYC289OZJb9CAmoMJu6aTnuHGQJTbIcgOx_BZ_RJLBmDS1f35tzvnNwcz7sluEMwpl2hsk2HYkpJkFBy5jVIRKK2j2l8ftrJ26V3Ze0KY8KYHzS89RCkVkW5RLOi1X0ULTT6kLkol4Be9K4CtNB7YRSaFMv8-_PrGUymzUaUEtC8dEJfWFBoJg5g3ByIKtcKLHKQC3T3qS5RX1QVmALstXeRibWFm9_Z9F7Ho8Vg0p49PUwHvVlb-kFA2lGcUsXSJEpCxcIUGE6lAh8LiSGifkokS92NQMISCaHAmdP8WNCMMoxD5Te9uzpX26rgVhYVyFzqsgRZcRpQliSxg-5raGv0-w5sxVd6Z0r3F6cxoXEcUBw6qlNT0mhrDWR8a4qNMAdOMD_Wzo-181PtzpDUhn2xhsM_NO8Nx_M_7w8XP4fv</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Cao, Bo</creator><creator>Chen, Zhefeng</creator><creator>Cao, Hongbin</creator><creator>Zhu, Chen</creator><creator>Yang, Hongkai</creator><creator>Li, Tianyi</creator><creator>Xu, Wenqian</creator><creator>Pan, Feng</creator><creator>Zhang, Mingjian</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1362-4336</orcidid><orcidid>https://orcid.org/0000-0002-6843-5911</orcidid><orcidid>https://orcid.org/0000000213624336</orcidid><orcidid>https://orcid.org/0000000268435911</orcidid></search><sort><creationdate>20230501</creationdate><title>Decoding Li+/Na+ Exchange Route Toward High‐Performance Mn‐Based Layered Cathodes for Li‐Ion Batteries</title><author>Cao, Bo ; Chen, Zhefeng ; Cao, Hongbin ; Zhu, Chen ; Yang, Hongkai ; Li, Tianyi ; Xu, Wenqian ; Pan, Feng ; Zhang, Mingjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3441-68b2d7b9695d75be70bcde30ac0e623b1c7b6951e979ce5a0f3b138a2f27005d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>Density functional theory</topic><topic>Electrochemical analysis</topic><topic>ENERGY STORAGE</topic><topic>layered intermediate</topic><topic>Li +/Na + ion‐exchanges</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mn-based layered cathodes</topic><topic>Phase transitions</topic><topic>Room temperature</topic><topic>Sodium</topic><topic>Synchrotrons</topic><topic>two-step phase transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Bo</creatorcontrib><creatorcontrib>Chen, Zhefeng</creatorcontrib><creatorcontrib>Cao, Hongbin</creatorcontrib><creatorcontrib>Zhu, Chen</creatorcontrib><creatorcontrib>Yang, Hongkai</creatorcontrib><creatorcontrib>Li, Tianyi</creatorcontrib><creatorcontrib>Xu, Wenqian</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Bo</au><au>Chen, Zhefeng</au><au>Cao, Hongbin</au><au>Zhu, Chen</au><au>Yang, Hongkai</au><au>Li, Tianyi</au><au>Xu, Wenqian</au><au>Pan, Feng</au><au>Zhang, Mingjian</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding Li+/Na+ Exchange Route Toward High‐Performance Mn‐Based Layered Cathodes for Li‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>33</volume><issue>20</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Li+/Na+ exchange has been extensively explored as an effective method to prepare high‐performance Mn‐based layered cathodes for Li‐ion batteries, since the first report in 1996 by P. G. Bruce (Nature, 1996. 381, 499–500). Understanding the detailed structural changes during the ion‐exchange process is crucial to implement the synthetic control of high‐performance layered Mn‐based cathodes, but less studied. Herein, in situ synchrotron X‐ray diffraction, density functional theory calculations, and electrochemical tests are combined to conduct the systemic studies into the structural changes during the ion‐exchange process of an Mn‐only layered cathode O3‐type Li0.67[Li0.22Mn0.78]O2 (LLMO) from the corresponding counterpart P3‐type Na0.67[Li0.22Mn0.78]O2 (NLMO). The temperature‐resolved observations combined with theoretical calculations reveal that the Li+/Na+ exchange is favorable thermodynamically and composited with two tandem topotactic phase transitions: 1) from NLMO to a layered intermediate through ≈60% of Li+/Na+ exchange. 2) then to the final layered product LLMO through further Li insertion. Moreover, the intermediate‐dominate composite is obtained by slowing down the exchange kinetics below room temperature, showing better electrochemical performance than LLMO obtained by the traditional molten‐salt method. The findings provide guides for the synthetic control of high‐performance Mn‐based cathodes under mild conditions.
The temperature‐resolved synchrotron X‐ray diffraction combined with density functional theory calculations are employed to study the Li+/Na+ exchange kinetics. It reveals two tandem topotactic phase transformations thermodynamically favorable, and then guides to obtain high‐performance Mn‐based layered oxides for Li‐ion batteries at mild conditions by tuning the synthetic kinetics.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202214921</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1362-4336</orcidid><orcidid>https://orcid.org/0000-0002-6843-5911</orcidid><orcidid>https://orcid.org/0000000213624336</orcidid><orcidid>https://orcid.org/0000000268435911</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-05, Vol.33 (20), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_osti_scitechconnect_2427998 |
source | Wiley Online Library All Journals |
subjects | Cathodes Density functional theory Electrochemical analysis ENERGY STORAGE layered intermediate Li +/Na + ion‐exchanges Lithium-ion batteries Materials science Mathematical analysis Mn-based layered cathodes Phase transitions Room temperature Sodium Synchrotrons two-step phase transformations |
title | Decoding Li+/Na+ Exchange Route Toward High‐Performance Mn‐Based Layered Cathodes for Li‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20Li+/Na+%20Exchange%20Route%20Toward%20High%E2%80%90Performance%20Mn%E2%80%90Based%20Layered%20Cathodes%20for%20Li%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Cao,%20Bo&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-05-01&rft.volume=33&rft.issue=20&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202214921&rft_dat=%3Cproquest_osti_%3E2812884205%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812884205&rft_id=info:pmid/&rfr_iscdi=true |