Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8
Metallic ferromagnets with strongly interacting electrons often exhibit remarkable electronic phases such as ferromagnetic superconductivity, complex spin textures, and nontrivial topology. Here, in this report, we discuss the synthesis of a layered magnetic metal NiTa4Se8 (or Ni1/4TaSe2) with a Cur...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2022-12, Vol.106 (22) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Physical review. B |
container_volume | 106 |
creator | Maksimovic, Nikola Day, Ryan Liebman-Peláez, Alex Wan, Fanghui Jo, Na-Hyun Jozwiak, Chris Bostwick, Aaron Rotenberg, Eli Griffin, Sinead Singleton, John Analytis, James G. |
description | Metallic ferromagnets with strongly interacting electrons often exhibit remarkable electronic phases such as ferromagnetic superconductivity, complex spin textures, and nontrivial topology. Here, in this report, we discuss the synthesis of a layered magnetic metal NiTa4Se8 (or Ni1/4TaSe2) with a Curie temperature of 58 Kelvin. Magnetization data and density functional theory calculations indicate that the nickel atoms host uniaxial ferromagnetic order of about 0.7µB per atom, while an even smaller moment is generated in the itinerant tantalum conduction electrons. Strong correlations are evident in flat bands near the Fermi level, a high heat capacity coefficient, and a high Kadowaki-Woods ratio. Density functional theory calculations suggest that electron and hole Fermi surfaces in the ferromagnetic phase are associated with opposite spin polarization. When the system is diluted of magnetic ions, the samples become superconducting below about 2 Kelvin. We discuss possible mechanisms for superconductivity in this family. |
doi_str_mv | 10.1103/PhysRevB.106.224429 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2426552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426552</sourcerecordid><originalsourceid>FETCH-LOGICAL-o182t-5fb38677de3320dd2a66a4ca8b3925c596ca2bef6494018af25e13834075e2e13</originalsourceid><addsrcrecordid>eNotjstOAjEUQLvQRIJ8gZvG_Yzt7WPapRIfGKJGcE06nTtQM3RMW0j4e0l0dc7q5BByw1nNORN3H7tT_sTjQ82ZrgGkBHtBJiC1raxV7IrMcv5mjHHNbMPshLyuShrjdjhRP6aEgyvY0VBCxORioXu3jVhC3tOILtF8-MHkx9gdfAnHUE40RPoW1k6u0FyTy94NGWf_nJKvp8f1_KVavj8v5vfLauQGSqX6VhjdNB0KAazrwGntpHemFRaUV1Z7By32WlrJuHE9KOTCCMkahXDWKbn96465hE32oaDfnaci-rIBCVopEL9K40_Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8</title><source>American Physical Society Journals</source><creator>Maksimovic, Nikola ; Day, Ryan ; Liebman-Peláez, Alex ; Wan, Fanghui ; Jo, Na-Hyun ; Jozwiak, Chris ; Bostwick, Aaron ; Rotenberg, Eli ; Griffin, Sinead ; Singleton, John ; Analytis, James G.</creator><creatorcontrib>Maksimovic, Nikola ; Day, Ryan ; Liebman-Peláez, Alex ; Wan, Fanghui ; Jo, Na-Hyun ; Jozwiak, Chris ; Bostwick, Aaron ; Rotenberg, Eli ; Griffin, Sinead ; Singleton, John ; Analytis, James G. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Metallic ferromagnets with strongly interacting electrons often exhibit remarkable electronic phases such as ferromagnetic superconductivity, complex spin textures, and nontrivial topology. Here, in this report, we discuss the synthesis of a layered magnetic metal NiTa4Se8 (or Ni1/4TaSe2) with a Curie temperature of 58 Kelvin. Magnetization data and density functional theory calculations indicate that the nickel atoms host uniaxial ferromagnetic order of about 0.7µB per atom, while an even smaller moment is generated in the itinerant tantalum conduction electrons. Strong correlations are evident in flat bands near the Fermi level, a high heat capacity coefficient, and a high Kadowaki-Woods ratio. Density functional theory calculations suggest that electron and hole Fermi surfaces in the ferromagnetic phase are associated with opposite spin polarization. When the system is diluted of magnetic ions, the samples become superconducting below about 2 Kelvin. We discuss possible mechanisms for superconductivity in this family.</description><identifier>ISSN: 2469-9950</identifier><identifier>DOI: 10.1103/PhysRevB.106.224429</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>30 DIRECT ENERGY CONVERSION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; High Magnetic Field Science</subject><ispartof>Physical review. B, 2022-12, Vol.106 (22)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000276577688 ; 0000000309630423 ; 0000000172920103 ; 0000000161096905 ; 0000000209803753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2426552$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maksimovic, Nikola</creatorcontrib><creatorcontrib>Day, Ryan</creatorcontrib><creatorcontrib>Liebman-Peláez, Alex</creatorcontrib><creatorcontrib>Wan, Fanghui</creatorcontrib><creatorcontrib>Jo, Na-Hyun</creatorcontrib><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Bostwick, Aaron</creatorcontrib><creatorcontrib>Rotenberg, Eli</creatorcontrib><creatorcontrib>Griffin, Sinead</creatorcontrib><creatorcontrib>Singleton, John</creatorcontrib><creatorcontrib>Analytis, James G.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8</title><title>Physical review. B</title><description>Metallic ferromagnets with strongly interacting electrons often exhibit remarkable electronic phases such as ferromagnetic superconductivity, complex spin textures, and nontrivial topology. Here, in this report, we discuss the synthesis of a layered magnetic metal NiTa4Se8 (or Ni1/4TaSe2) with a Curie temperature of 58 Kelvin. Magnetization data and density functional theory calculations indicate that the nickel atoms host uniaxial ferromagnetic order of about 0.7µB per atom, while an even smaller moment is generated in the itinerant tantalum conduction electrons. Strong correlations are evident in flat bands near the Fermi level, a high heat capacity coefficient, and a high Kadowaki-Woods ratio. Density functional theory calculations suggest that electron and hole Fermi surfaces in the ferromagnetic phase are associated with opposite spin polarization. When the system is diluted of magnetic ions, the samples become superconducting below about 2 Kelvin. We discuss possible mechanisms for superconductivity in this family.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>High Magnetic Field Science</subject><issn>2469-9950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjstOAjEUQLvQRIJ8gZvG_Yzt7WPapRIfGKJGcE06nTtQM3RMW0j4e0l0dc7q5BByw1nNORN3H7tT_sTjQ82ZrgGkBHtBJiC1raxV7IrMcv5mjHHNbMPshLyuShrjdjhRP6aEgyvY0VBCxORioXu3jVhC3tOILtF8-MHkx9gdfAnHUE40RPoW1k6u0FyTy94NGWf_nJKvp8f1_KVavj8v5vfLauQGSqX6VhjdNB0KAazrwGntpHemFRaUV1Z7By32WlrJuHE9KOTCCMkahXDWKbn96465hE32oaDfnaci-rIBCVopEL9K40_Z</recordid><startdate>20221229</startdate><enddate>20221229</enddate><creator>Maksimovic, Nikola</creator><creator>Day, Ryan</creator><creator>Liebman-Peláez, Alex</creator><creator>Wan, Fanghui</creator><creator>Jo, Na-Hyun</creator><creator>Jozwiak, Chris</creator><creator>Bostwick, Aaron</creator><creator>Rotenberg, Eli</creator><creator>Griffin, Sinead</creator><creator>Singleton, John</creator><creator>Analytis, James G.</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000276577688</orcidid><orcidid>https://orcid.org/0000000309630423</orcidid><orcidid>https://orcid.org/0000000172920103</orcidid><orcidid>https://orcid.org/0000000161096905</orcidid><orcidid>https://orcid.org/0000000209803753</orcidid></search><sort><creationdate>20221229</creationdate><title>Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8</title><author>Maksimovic, Nikola ; Day, Ryan ; Liebman-Peláez, Alex ; Wan, Fanghui ; Jo, Na-Hyun ; Jozwiak, Chris ; Bostwick, Aaron ; Rotenberg, Eli ; Griffin, Sinead ; Singleton, John ; Analytis, James G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o182t-5fb38677de3320dd2a66a4ca8b3925c596ca2bef6494018af25e13834075e2e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>High Magnetic Field Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksimovic, Nikola</creatorcontrib><creatorcontrib>Day, Ryan</creatorcontrib><creatorcontrib>Liebman-Peláez, Alex</creatorcontrib><creatorcontrib>Wan, Fanghui</creatorcontrib><creatorcontrib>Jo, Na-Hyun</creatorcontrib><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Bostwick, Aaron</creatorcontrib><creatorcontrib>Rotenberg, Eli</creatorcontrib><creatorcontrib>Griffin, Sinead</creatorcontrib><creatorcontrib>Singleton, John</creatorcontrib><creatorcontrib>Analytis, James G.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksimovic, Nikola</au><au>Day, Ryan</au><au>Liebman-Peláez, Alex</au><au>Wan, Fanghui</au><au>Jo, Na-Hyun</au><au>Jozwiak, Chris</au><au>Bostwick, Aaron</au><au>Rotenberg, Eli</au><au>Griffin, Sinead</au><au>Singleton, John</au><au>Analytis, James G.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8</atitle><jtitle>Physical review. B</jtitle><date>2022-12-29</date><risdate>2022</risdate><volume>106</volume><issue>22</issue><issn>2469-9950</issn><abstract>Metallic ferromagnets with strongly interacting electrons often exhibit remarkable electronic phases such as ferromagnetic superconductivity, complex spin textures, and nontrivial topology. Here, in this report, we discuss the synthesis of a layered magnetic metal NiTa4Se8 (or Ni1/4TaSe2) with a Curie temperature of 58 Kelvin. Magnetization data and density functional theory calculations indicate that the nickel atoms host uniaxial ferromagnetic order of about 0.7µB per atom, while an even smaller moment is generated in the itinerant tantalum conduction electrons. Strong correlations are evident in flat bands near the Fermi level, a high heat capacity coefficient, and a high Kadowaki-Woods ratio. Density functional theory calculations suggest that electron and hole Fermi surfaces in the ferromagnetic phase are associated with opposite spin polarization. When the system is diluted of magnetic ions, the samples become superconducting below about 2 Kelvin. We discuss possible mechanisms for superconductivity in this family.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevB.106.224429</doi><orcidid>https://orcid.org/0000000276577688</orcidid><orcidid>https://orcid.org/0000000309630423</orcidid><orcidid>https://orcid.org/0000000172920103</orcidid><orcidid>https://orcid.org/0000000161096905</orcidid><orcidid>https://orcid.org/0000000209803753</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2022-12, Vol.106 (22) |
issn | 2469-9950 |
language | eng |
recordid | cdi_osti_scitechconnect_2426552 |
source | American Physical Society Journals |
subjects | 30 DIRECT ENERGY CONVERSION CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY High Magnetic Field Science |
title | Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strongly%20correlated%20itinerant%20magnetism%20near%20superconductivity%20in%20NiTa4Se8&rft.jtitle=Physical%20review.%20B&rft.au=Maksimovic,%20Nikola&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-12-29&rft.volume=106&rft.issue=22&rft.issn=2469-9950&rft_id=info:doi/10.1103/PhysRevB.106.224429&rft_dat=%3Costi%3E2426552%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |