Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8

Metallic ferromagnets with strongly interacting electrons often exhibit remarkable electronic phases such as ferromagnetic superconductivity, complex spin textures, and nontrivial topology. Here, in this report, we discuss the synthesis of a layered magnetic metal NiTa4Se8 (or Ni1/4TaSe2) with a Cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2022-12, Vol.106 (22)
Hauptverfasser: Maksimovic, Nikola, Day, Ryan, Liebman-Peláez, Alex, Wan, Fanghui, Jo, Na-Hyun, Jozwiak, Chris, Bostwick, Aaron, Rotenberg, Eli, Griffin, Sinead, Singleton, John, Analytis, James G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Physical review. B
container_volume 106
creator Maksimovic, Nikola
Day, Ryan
Liebman-Peláez, Alex
Wan, Fanghui
Jo, Na-Hyun
Jozwiak, Chris
Bostwick, Aaron
Rotenberg, Eli
Griffin, Sinead
Singleton, John
Analytis, James G.
description Metallic ferromagnets with strongly interacting electrons often exhibit remarkable electronic phases such as ferromagnetic superconductivity, complex spin textures, and nontrivial topology. Here, in this report, we discuss the synthesis of a layered magnetic metal NiTa4Se8 (or Ni1/4TaSe2) with a Curie temperature of 58 Kelvin. Magnetization data and density functional theory calculations indicate that the nickel atoms host uniaxial ferromagnetic order of about 0.7µB per atom, while an even smaller moment is generated in the itinerant tantalum conduction electrons. Strong correlations are evident in flat bands near the Fermi level, a high heat capacity coefficient, and a high Kadowaki-Woods ratio. Density functional theory calculations suggest that electron and hole Fermi surfaces in the ferromagnetic phase are associated with opposite spin polarization. When the system is diluted of magnetic ions, the samples become superconducting below about 2 Kelvin. We discuss possible mechanisms for superconductivity in this family.
doi_str_mv 10.1103/PhysRevB.106.224429
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2426552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426552</sourcerecordid><originalsourceid>FETCH-LOGICAL-o182t-5fb38677de3320dd2a66a4ca8b3925c596ca2bef6494018af25e13834075e2e13</originalsourceid><addsrcrecordid>eNotjstOAjEUQLvQRIJ8gZvG_Yzt7WPapRIfGKJGcE06nTtQM3RMW0j4e0l0dc7q5BByw1nNORN3H7tT_sTjQ82ZrgGkBHtBJiC1raxV7IrMcv5mjHHNbMPshLyuShrjdjhRP6aEgyvY0VBCxORioXu3jVhC3tOILtF8-MHkx9gdfAnHUE40RPoW1k6u0FyTy94NGWf_nJKvp8f1_KVavj8v5vfLauQGSqX6VhjdNB0KAazrwGntpHemFRaUV1Z7By32WlrJuHE9KOTCCMkahXDWKbn96465hE32oaDfnaci-rIBCVopEL9K40_Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8</title><source>American Physical Society Journals</source><creator>Maksimovic, Nikola ; Day, Ryan ; Liebman-Peláez, Alex ; Wan, Fanghui ; Jo, Na-Hyun ; Jozwiak, Chris ; Bostwick, Aaron ; Rotenberg, Eli ; Griffin, Sinead ; Singleton, John ; Analytis, James G.</creator><creatorcontrib>Maksimovic, Nikola ; Day, Ryan ; Liebman-Peláez, Alex ; Wan, Fanghui ; Jo, Na-Hyun ; Jozwiak, Chris ; Bostwick, Aaron ; Rotenberg, Eli ; Griffin, Sinead ; Singleton, John ; Analytis, James G. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Metallic ferromagnets with strongly interacting electrons often exhibit remarkable electronic phases such as ferromagnetic superconductivity, complex spin textures, and nontrivial topology. Here, in this report, we discuss the synthesis of a layered magnetic metal NiTa4Se8 (or Ni1/4TaSe2) with a Curie temperature of 58 Kelvin. Magnetization data and density functional theory calculations indicate that the nickel atoms host uniaxial ferromagnetic order of about 0.7µB per atom, while an even smaller moment is generated in the itinerant tantalum conduction electrons. Strong correlations are evident in flat bands near the Fermi level, a high heat capacity coefficient, and a high Kadowaki-Woods ratio. Density functional theory calculations suggest that electron and hole Fermi surfaces in the ferromagnetic phase are associated with opposite spin polarization. When the system is diluted of magnetic ions, the samples become superconducting below about 2 Kelvin. We discuss possible mechanisms for superconductivity in this family.</description><identifier>ISSN: 2469-9950</identifier><identifier>DOI: 10.1103/PhysRevB.106.224429</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>30 DIRECT ENERGY CONVERSION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; High Magnetic Field Science</subject><ispartof>Physical review. B, 2022-12, Vol.106 (22)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000276577688 ; 0000000309630423 ; 0000000172920103 ; 0000000161096905 ; 0000000209803753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2426552$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maksimovic, Nikola</creatorcontrib><creatorcontrib>Day, Ryan</creatorcontrib><creatorcontrib>Liebman-Peláez, Alex</creatorcontrib><creatorcontrib>Wan, Fanghui</creatorcontrib><creatorcontrib>Jo, Na-Hyun</creatorcontrib><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Bostwick, Aaron</creatorcontrib><creatorcontrib>Rotenberg, Eli</creatorcontrib><creatorcontrib>Griffin, Sinead</creatorcontrib><creatorcontrib>Singleton, John</creatorcontrib><creatorcontrib>Analytis, James G.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8</title><title>Physical review. B</title><description>Metallic ferromagnets with strongly interacting electrons often exhibit remarkable electronic phases such as ferromagnetic superconductivity, complex spin textures, and nontrivial topology. Here, in this report, we discuss the synthesis of a layered magnetic metal NiTa4Se8 (or Ni1/4TaSe2) with a Curie temperature of 58 Kelvin. Magnetization data and density functional theory calculations indicate that the nickel atoms host uniaxial ferromagnetic order of about 0.7µB per atom, while an even smaller moment is generated in the itinerant tantalum conduction electrons. Strong correlations are evident in flat bands near the Fermi level, a high heat capacity coefficient, and a high Kadowaki-Woods ratio. Density functional theory calculations suggest that electron and hole Fermi surfaces in the ferromagnetic phase are associated with opposite spin polarization. When the system is diluted of magnetic ions, the samples become superconducting below about 2 Kelvin. We discuss possible mechanisms for superconductivity in this family.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>High Magnetic Field Science</subject><issn>2469-9950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjstOAjEUQLvQRIJ8gZvG_Yzt7WPapRIfGKJGcE06nTtQM3RMW0j4e0l0dc7q5BByw1nNORN3H7tT_sTjQ82ZrgGkBHtBJiC1raxV7IrMcv5mjHHNbMPshLyuShrjdjhRP6aEgyvY0VBCxORioXu3jVhC3tOILtF8-MHkx9gdfAnHUE40RPoW1k6u0FyTy94NGWf_nJKvp8f1_KVavj8v5vfLauQGSqX6VhjdNB0KAazrwGntpHemFRaUV1Z7By32WlrJuHE9KOTCCMkahXDWKbn96465hE32oaDfnaci-rIBCVopEL9K40_Z</recordid><startdate>20221229</startdate><enddate>20221229</enddate><creator>Maksimovic, Nikola</creator><creator>Day, Ryan</creator><creator>Liebman-Peláez, Alex</creator><creator>Wan, Fanghui</creator><creator>Jo, Na-Hyun</creator><creator>Jozwiak, Chris</creator><creator>Bostwick, Aaron</creator><creator>Rotenberg, Eli</creator><creator>Griffin, Sinead</creator><creator>Singleton, John</creator><creator>Analytis, James G.</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000276577688</orcidid><orcidid>https://orcid.org/0000000309630423</orcidid><orcidid>https://orcid.org/0000000172920103</orcidid><orcidid>https://orcid.org/0000000161096905</orcidid><orcidid>https://orcid.org/0000000209803753</orcidid></search><sort><creationdate>20221229</creationdate><title>Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8</title><author>Maksimovic, Nikola ; Day, Ryan ; Liebman-Peláez, Alex ; Wan, Fanghui ; Jo, Na-Hyun ; Jozwiak, Chris ; Bostwick, Aaron ; Rotenberg, Eli ; Griffin, Sinead ; Singleton, John ; Analytis, James G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o182t-5fb38677de3320dd2a66a4ca8b3925c596ca2bef6494018af25e13834075e2e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>High Magnetic Field Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksimovic, Nikola</creatorcontrib><creatorcontrib>Day, Ryan</creatorcontrib><creatorcontrib>Liebman-Peláez, Alex</creatorcontrib><creatorcontrib>Wan, Fanghui</creatorcontrib><creatorcontrib>Jo, Na-Hyun</creatorcontrib><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Bostwick, Aaron</creatorcontrib><creatorcontrib>Rotenberg, Eli</creatorcontrib><creatorcontrib>Griffin, Sinead</creatorcontrib><creatorcontrib>Singleton, John</creatorcontrib><creatorcontrib>Analytis, James G.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksimovic, Nikola</au><au>Day, Ryan</au><au>Liebman-Peláez, Alex</au><au>Wan, Fanghui</au><au>Jo, Na-Hyun</au><au>Jozwiak, Chris</au><au>Bostwick, Aaron</au><au>Rotenberg, Eli</au><au>Griffin, Sinead</au><au>Singleton, John</au><au>Analytis, James G.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8</atitle><jtitle>Physical review. B</jtitle><date>2022-12-29</date><risdate>2022</risdate><volume>106</volume><issue>22</issue><issn>2469-9950</issn><abstract>Metallic ferromagnets with strongly interacting electrons often exhibit remarkable electronic phases such as ferromagnetic superconductivity, complex spin textures, and nontrivial topology. Here, in this report, we discuss the synthesis of a layered magnetic metal NiTa4Se8 (or Ni1/4TaSe2) with a Curie temperature of 58 Kelvin. Magnetization data and density functional theory calculations indicate that the nickel atoms host uniaxial ferromagnetic order of about 0.7µB per atom, while an even smaller moment is generated in the itinerant tantalum conduction electrons. Strong correlations are evident in flat bands near the Fermi level, a high heat capacity coefficient, and a high Kadowaki-Woods ratio. Density functional theory calculations suggest that electron and hole Fermi surfaces in the ferromagnetic phase are associated with opposite spin polarization. When the system is diluted of magnetic ions, the samples become superconducting below about 2 Kelvin. We discuss possible mechanisms for superconductivity in this family.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevB.106.224429</doi><orcidid>https://orcid.org/0000000276577688</orcidid><orcidid>https://orcid.org/0000000309630423</orcidid><orcidid>https://orcid.org/0000000172920103</orcidid><orcidid>https://orcid.org/0000000161096905</orcidid><orcidid>https://orcid.org/0000000209803753</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2022-12, Vol.106 (22)
issn 2469-9950
language eng
recordid cdi_osti_scitechconnect_2426552
source American Physical Society Journals
subjects 30 DIRECT ENERGY CONVERSION
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
High Magnetic Field Science
title Strongly correlated itinerant magnetism near superconductivity in NiTa4Se8
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strongly%20correlated%20itinerant%20magnetism%20near%20superconductivity%20in%20NiTa4Se8&rft.jtitle=Physical%20review.%20B&rft.au=Maksimovic,%20Nikola&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-12-29&rft.volume=106&rft.issue=22&rft.issn=2469-9950&rft_id=info:doi/10.1103/PhysRevB.106.224429&rft_dat=%3Costi%3E2426552%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true