Alpha particle loss measurements and analysis in JET DT plasmas
Burning reactor plasmas will be self-heated by fusion born alpha particles from deuterium-tritium reactions. Consequently, a thorough understanding of the confinement and transport of DT-born alpha particles is necessary to maintain the plasma self-heating. Measurements of fast ion losses provide a...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2024-09, Vol.64 (9), p.96038 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Burning reactor plasmas will be self-heated by fusion born alpha particles from deuterium-tritium reactions. Consequently, a thorough understanding of the confinement and transport of DT-born alpha particles is necessary to maintain the plasma self-heating. Measurements of fast ion losses provide a direct means to monitor alpha particle confinement. JET’s 2021–2022 second experimental DT-campaign offers burning plasma scenarios with advanced fast ion loss diagnostics for the first time in nearly 25 years. Coherent and non-coherent alpha losses were observed due to a variety of low frequency MHD activity. This manuscript will present the loss mechanisms, spatial and pitch dependencies, scalings with plasma parameters, correlations with wall impurities, and magnitude of DT-alpha born losses. |
---|---|
ISSN: | 0029-5515 1741-4326 |
DOI: | 10.1088/1741-4326/ad69a1 |