Unraveling the Mechanisms of Fe Oxidation and Mn Reduction on Mn Indicators of Reduction in Soil (IRIS) Films
Indicators of reduction in soil (IRIS) devices are low-cost soil redox sensors coated with Fe or Mn oxides, which can be reductively dissolved from the device under suitable redox conditions. Removal of the metal oxide coating from the surface, leaving behind the white film, can be quantified and us...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2023-04, Vol.57 (16), p.6530-6539 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6539 |
---|---|
container_issue | 16 |
container_start_page | 6530 |
container_title | Environmental science & technology |
container_volume | 57 |
creator | Limmer, Matt A. Linam, Franklin A. Evans, Abby E. Seyfferth, Angelia L. |
description | Indicators of reduction in soil (IRIS) devices are low-cost soil redox sensors coated with Fe or Mn oxides, which can be reductively dissolved from the device under suitable redox conditions. Removal of the metal oxide coating from the surface, leaving behind the white film, can be quantified and used as an indicator of reducing conditions in soils. Manganese IRIS, coated with birnessite, can also oxidize Fe(II), resulting in a color change from brown to orange that complicates the interpretation of coating removal. Here, we studied field-deployed Mn IRIS films where Fe oxidation was present to unravel the mechanisms of Mn oxidation of Fe(II) and the resulting minerals on the IRIS film surface. We observed reductions in the Mn average oxidation state when Fe precipitation was evident. Fe precipitation was primarily ferrihydrite (30–90%), but lepidocrocite and goethite were also detected, notably when the Mn average oxidation state decreased. The decrease in the average oxidation state of Mn was due to the adsorption of Mn(II) to the oxidized Fe and the precipitation of rhodochrosite (MnCO3) on the film. The results were variable on small spatial scales ( |
doi_str_mv | 10.1021/acs.est.3c00161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2425518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806178574</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-f2c24a307d8abe492f82ef3439322213d6868a3e33ade8813f32b5efbc92cea53</originalsourceid><addsrcrecordid>eNp1kdFrFDEQxoMo9qw--yZBXyqy12Rms5t9lNLTg5ZCa8G3kMvO2pTdpN3siv3vzfXOCoIQCJn8vm-Y-Rh7K8VSCpDH1qUlpWmJTghZyWdsIRWIQmkln7NFrmHRYPX9gL1K6VYIASj0S3aAtVBYNnrBhusw2p_U-_CDTzfEz8nd2ODTkHjs-Ir4xS_f2snHwG1o-Xngl9TO7rGQT36vQ-udneL4qPj76wO_ir7nR-vL9dVHvvL9kF6zF53tE73Z34fsenX67eRrcXbxZX3y-aywqPVUdOCgtCjqVtsNlQ10GqjDEhsEAIltpSttkRBtS1pL7BA2irqNa8CRVXjI3u98Y5q8Sc5PeSwXQyA3GShBKakzdLSD7sZ4P-ctmsEnR31vA8U5GdBCNhqhhox--Ae9jfMY8ghbqpK1VnWZqeMd5caY0kiduRv9YMcHI4XZxmVyXGar3seVFe_2vvNmoPaJ_5NPBj7tgK3yqef_7H4D9Ned9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806178574</pqid></control><display><type>article</type><title>Unraveling the Mechanisms of Fe Oxidation and Mn Reduction on Mn Indicators of Reduction in Soil (IRIS) Films</title><source>MEDLINE</source><source>ACS Publications</source><creator>Limmer, Matt A. ; Linam, Franklin A. ; Evans, Abby E. ; Seyfferth, Angelia L.</creator><creatorcontrib>Limmer, Matt A. ; Linam, Franklin A. ; Evans, Abby E. ; Seyfferth, Angelia L. ; Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><description>Indicators of reduction in soil (IRIS) devices are low-cost soil redox sensors coated with Fe or Mn oxides, which can be reductively dissolved from the device under suitable redox conditions. Removal of the metal oxide coating from the surface, leaving behind the white film, can be quantified and used as an indicator of reducing conditions in soils. Manganese IRIS, coated with birnessite, can also oxidize Fe(II), resulting in a color change from brown to orange that complicates the interpretation of coating removal. Here, we studied field-deployed Mn IRIS films where Fe oxidation was present to unravel the mechanisms of Mn oxidation of Fe(II) and the resulting minerals on the IRIS film surface. We observed reductions in the Mn average oxidation state when Fe precipitation was evident. Fe precipitation was primarily ferrihydrite (30–90%), but lepidocrocite and goethite were also detected, notably when the Mn average oxidation state decreased. The decrease in the average oxidation state of Mn was due to the adsorption of Mn(II) to the oxidized Fe and the precipitation of rhodochrosite (MnCO3) on the film. The results were variable on small spatial scales (<1 mm), highlighting the suitability of IRIS in studying heterogeneous redox reactions in soil. Mn IRIS also provides a tool to bridge lab and field studies of the interactions between Mn oxides and reduced constituents.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c00161</identifier><identifier>PMID: 37053498</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biogeochemical Cycling ; Chemical precipitation ; Coatings ; Engineering ; Environmental Sciences & Ecology ; Ferric Compounds ; Ferrous Compounds ; Goethite ; Indicators ; Iron ; Iron constituents ; Manganese ; Metal oxides ; Oxidation ; Oxidation-Reduction ; Oxide coatings ; Oxides ; Redox reactions ; Soil ; Soil conditions ; Soils ; Valence</subject><ispartof>Environmental science & technology, 2023-04, Vol.57 (16), p.6530-6539</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 25, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-f2c24a307d8abe492f82ef3439322213d6868a3e33ade8813f32b5efbc92cea53</citedby><cites>FETCH-LOGICAL-a388t-f2c24a307d8abe492f82ef3439322213d6868a3e33ade8813f32b5efbc92cea53</cites><orcidid>0000-0001-8119-0229 ; 0000-0003-3589-6815 ; 0000-0001-5071-1300 ; 0000000335896815 ; 0000000181190229 ; 0000000150711300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c00161$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c00161$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37053498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2425518$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Limmer, Matt A.</creatorcontrib><creatorcontrib>Linam, Franklin A.</creatorcontrib><creatorcontrib>Evans, Abby E.</creatorcontrib><creatorcontrib>Seyfferth, Angelia L.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><title>Unraveling the Mechanisms of Fe Oxidation and Mn Reduction on Mn Indicators of Reduction in Soil (IRIS) Films</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Indicators of reduction in soil (IRIS) devices are low-cost soil redox sensors coated with Fe or Mn oxides, which can be reductively dissolved from the device under suitable redox conditions. Removal of the metal oxide coating from the surface, leaving behind the white film, can be quantified and used as an indicator of reducing conditions in soils. Manganese IRIS, coated with birnessite, can also oxidize Fe(II), resulting in a color change from brown to orange that complicates the interpretation of coating removal. Here, we studied field-deployed Mn IRIS films where Fe oxidation was present to unravel the mechanisms of Mn oxidation of Fe(II) and the resulting minerals on the IRIS film surface. We observed reductions in the Mn average oxidation state when Fe precipitation was evident. Fe precipitation was primarily ferrihydrite (30–90%), but lepidocrocite and goethite were also detected, notably when the Mn average oxidation state decreased. The decrease in the average oxidation state of Mn was due to the adsorption of Mn(II) to the oxidized Fe and the precipitation of rhodochrosite (MnCO3) on the film. The results were variable on small spatial scales (<1 mm), highlighting the suitability of IRIS in studying heterogeneous redox reactions in soil. Mn IRIS also provides a tool to bridge lab and field studies of the interactions between Mn oxides and reduced constituents.</description><subject>Biogeochemical Cycling</subject><subject>Chemical precipitation</subject><subject>Coatings</subject><subject>Engineering</subject><subject>Environmental Sciences & Ecology</subject><subject>Ferric Compounds</subject><subject>Ferrous Compounds</subject><subject>Goethite</subject><subject>Indicators</subject><subject>Iron</subject><subject>Iron constituents</subject><subject>Manganese</subject><subject>Metal oxides</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxide coatings</subject><subject>Oxides</subject><subject>Redox reactions</subject><subject>Soil</subject><subject>Soil conditions</subject><subject>Soils</subject><subject>Valence</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kdFrFDEQxoMo9qw--yZBXyqy12Rms5t9lNLTg5ZCa8G3kMvO2pTdpN3siv3vzfXOCoIQCJn8vm-Y-Rh7K8VSCpDH1qUlpWmJTghZyWdsIRWIQmkln7NFrmHRYPX9gL1K6VYIASj0S3aAtVBYNnrBhusw2p_U-_CDTzfEz8nd2ODTkHjs-Ir4xS_f2snHwG1o-Xngl9TO7rGQT36vQ-udneL4qPj76wO_ir7nR-vL9dVHvvL9kF6zF53tE73Z34fsenX67eRrcXbxZX3y-aywqPVUdOCgtCjqVtsNlQ10GqjDEhsEAIltpSttkRBtS1pL7BA2irqNa8CRVXjI3u98Y5q8Sc5PeSwXQyA3GShBKakzdLSD7sZ4P-ctmsEnR31vA8U5GdBCNhqhhox--Ae9jfMY8ghbqpK1VnWZqeMd5caY0kiduRv9YMcHI4XZxmVyXGar3seVFe_2vvNmoPaJ_5NPBj7tgK3yqef_7H4D9Ned9A</recordid><startdate>20230425</startdate><enddate>20230425</enddate><creator>Limmer, Matt A.</creator><creator>Linam, Franklin A.</creator><creator>Evans, Abby E.</creator><creator>Seyfferth, Angelia L.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8119-0229</orcidid><orcidid>https://orcid.org/0000-0003-3589-6815</orcidid><orcidid>https://orcid.org/0000-0001-5071-1300</orcidid><orcidid>https://orcid.org/0000000335896815</orcidid><orcidid>https://orcid.org/0000000181190229</orcidid><orcidid>https://orcid.org/0000000150711300</orcidid></search><sort><creationdate>20230425</creationdate><title>Unraveling the Mechanisms of Fe Oxidation and Mn Reduction on Mn Indicators of Reduction in Soil (IRIS) Films</title><author>Limmer, Matt A. ; Linam, Franklin A. ; Evans, Abby E. ; Seyfferth, Angelia L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-f2c24a307d8abe492f82ef3439322213d6868a3e33ade8813f32b5efbc92cea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biogeochemical Cycling</topic><topic>Chemical precipitation</topic><topic>Coatings</topic><topic>Engineering</topic><topic>Environmental Sciences & Ecology</topic><topic>Ferric Compounds</topic><topic>Ferrous Compounds</topic><topic>Goethite</topic><topic>Indicators</topic><topic>Iron</topic><topic>Iron constituents</topic><topic>Manganese</topic><topic>Metal oxides</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxide coatings</topic><topic>Oxides</topic><topic>Redox reactions</topic><topic>Soil</topic><topic>Soil conditions</topic><topic>Soils</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Limmer, Matt A.</creatorcontrib><creatorcontrib>Linam, Franklin A.</creatorcontrib><creatorcontrib>Evans, Abby E.</creatorcontrib><creatorcontrib>Seyfferth, Angelia L.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Limmer, Matt A.</au><au>Linam, Franklin A.</au><au>Evans, Abby E.</au><au>Seyfferth, Angelia L.</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Mechanisms of Fe Oxidation and Mn Reduction on Mn Indicators of Reduction in Soil (IRIS) Films</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-04-25</date><risdate>2023</risdate><volume>57</volume><issue>16</issue><spage>6530</spage><epage>6539</epage><pages>6530-6539</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Indicators of reduction in soil (IRIS) devices are low-cost soil redox sensors coated with Fe or Mn oxides, which can be reductively dissolved from the device under suitable redox conditions. Removal of the metal oxide coating from the surface, leaving behind the white film, can be quantified and used as an indicator of reducing conditions in soils. Manganese IRIS, coated with birnessite, can also oxidize Fe(II), resulting in a color change from brown to orange that complicates the interpretation of coating removal. Here, we studied field-deployed Mn IRIS films where Fe oxidation was present to unravel the mechanisms of Mn oxidation of Fe(II) and the resulting minerals on the IRIS film surface. We observed reductions in the Mn average oxidation state when Fe precipitation was evident. Fe precipitation was primarily ferrihydrite (30–90%), but lepidocrocite and goethite were also detected, notably when the Mn average oxidation state decreased. The decrease in the average oxidation state of Mn was due to the adsorption of Mn(II) to the oxidized Fe and the precipitation of rhodochrosite (MnCO3) on the film. The results were variable on small spatial scales (<1 mm), highlighting the suitability of IRIS in studying heterogeneous redox reactions in soil. Mn IRIS also provides a tool to bridge lab and field studies of the interactions between Mn oxides and reduced constituents.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37053498</pmid><doi>10.1021/acs.est.3c00161</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8119-0229</orcidid><orcidid>https://orcid.org/0000-0003-3589-6815</orcidid><orcidid>https://orcid.org/0000-0001-5071-1300</orcidid><orcidid>https://orcid.org/0000000335896815</orcidid><orcidid>https://orcid.org/0000000181190229</orcidid><orcidid>https://orcid.org/0000000150711300</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2023-04, Vol.57 (16), p.6530-6539 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_osti_scitechconnect_2425518 |
source | MEDLINE; ACS Publications |
subjects | Biogeochemical Cycling Chemical precipitation Coatings Engineering Environmental Sciences & Ecology Ferric Compounds Ferrous Compounds Goethite Indicators Iron Iron constituents Manganese Metal oxides Oxidation Oxidation-Reduction Oxide coatings Oxides Redox reactions Soil Soil conditions Soils Valence |
title | Unraveling the Mechanisms of Fe Oxidation and Mn Reduction on Mn Indicators of Reduction in Soil (IRIS) Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Mechanisms%20of%20Fe%20Oxidation%20and%20Mn%20Reduction%20on%20Mn%20Indicators%20of%20Reduction%20in%20Soil%20(IRIS)%20Films&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Limmer,%20Matt%20A.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States).%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2023-04-25&rft.volume=57&rft.issue=16&rft.spage=6530&rft.epage=6539&rft.pages=6530-6539&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c00161&rft_dat=%3Cproquest_osti_%3E2806178574%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806178574&rft_id=info:pmid/37053498&rfr_iscdi=true |