Derivation of heterogeneous material distributions and their sensitivity to HM-coupled two-phase flow models exemplified with the LASGIT experiment

Advective gas transport in bentonite, a possible buffer material in repositories for radioactive materials, is difficult to simulate in numerical continuum models, partly due to the complicated microstructure of bentonite. To generate reliable models of repositories nevertheless, spatially distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2023-07, Vol.82 (14), p.347-347, Article 347
Hauptverfasser: Radeisen, Eike, Shao, Hua, Pitz, Michael, Hesser, Jürgen, Wang, Wenqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 14
container_start_page 347
container_title Environmental earth sciences
container_volume 82
creator Radeisen, Eike
Shao, Hua
Pitz, Michael
Hesser, Jürgen
Wang, Wenqing
description Advective gas transport in bentonite, a possible buffer material in repositories for radioactive materials, is difficult to simulate in numerical continuum models, partly due to the complicated microstructure of bentonite. To generate reliable models of repositories nevertheless, spatially distributed heterogeneous material properties can be used to allow localization of gas flow. In this study, a pore-size-dependent stochastic approach of the gas entry pressure is derived from Mercury Intrusion Porosimetry, which is used to replicate measurements from the LASGIT experiment. In addition, three benchmark tests are simulated to investigate the dependence of heterogeneous distributions of material properties on the mesh discretization, the temporal dependence, and the coupling between the processes influenced by the heterogeneous parameters. The numerical modeling results of the LASGIT experiment show that the onset of gas flow into the system and the subsequent increase in pressure and stress can be well reproduced using heterogeneous distributions. Compared to a model with homogeneous material properties, heterogeneous distributions may allow the generation of dilatancy-controlled microfractures—an important feature with regard to the advective gas flow in bentonites. However, it can be observed that the heterogeneous distributions in LASGIT are less significant, as technical gaps or differences in material types could have a greater impact.
doi_str_mv 10.1007/s12665-023-11004-z
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2424424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153148155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-8e1e1baee76d59b14acb5b16c28161ef5f119c189553d0cbebbf3ace31fd6fb83</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhiPUSqCFF-jJopdeUjx2YpIjoi0gbdVD6dmynTExSuLUdljgNfrC9RLUSj3UsuSx5_tnNP6L4h3Qj0Dp-VkEJkRdUsZLyA9V-XxQHEEjRClY2775Ezf0sDiJ8Z7mxYG3VBwVvz5hcA8qOT8Rb0mPCYO_wwn9Esmo8s2pgXQupuD0ssciUVNHUo8ukIhTdMk9uPREkifXX0vjl3nAnN_5cu5VRGIHvyOj73CIBB9xnAdnXSZ2LvX7MmR78f3q5jbn5txsxCkdF2-tGiKevJ6b4seXz7eX1-X229XN5cW2NBXjqWwQELRCPBdd3WqolNG1BmFYAwLQ1hagNdC0dc07ajRqbbkyyMF2wuqGb4rTta6PycloXELTGz9NaJJkFavyztCHFZqD_7lgTHJ00eAwqJc_khxqDlUDucmmeP8Peu-XMOURJGs4E1zwimaKrZQJPsaAVs55bBWeJFC591Oufsrsp3zxUz5nEV9FMcPTHYa_pf-j-g1jWaah</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832636340</pqid></control><display><type>article</type><title>Derivation of heterogeneous material distributions and their sensitivity to HM-coupled two-phase flow models exemplified with the LASGIT experiment</title><source>Springer Nature - Complete Springer Journals</source><creator>Radeisen, Eike ; Shao, Hua ; Pitz, Michael ; Hesser, Jürgen ; Wang, Wenqing</creator><creatorcontrib>Radeisen, Eike ; Shao, Hua ; Pitz, Michael ; Hesser, Jürgen ; Wang, Wenqing ; Federal Institute for Geosciences and Natural Resources (BGR), Hanover (Germany)</creatorcontrib><description>Advective gas transport in bentonite, a possible buffer material in repositories for radioactive materials, is difficult to simulate in numerical continuum models, partly due to the complicated microstructure of bentonite. To generate reliable models of repositories nevertheless, spatially distributed heterogeneous material properties can be used to allow localization of gas flow. In this study, a pore-size-dependent stochastic approach of the gas entry pressure is derived from Mercury Intrusion Porosimetry, which is used to replicate measurements from the LASGIT experiment. In addition, three benchmark tests are simulated to investigate the dependence of heterogeneous distributions of material properties on the mesh discretization, the temporal dependence, and the coupling between the processes influenced by the heterogeneous parameters. The numerical modeling results of the LASGIT experiment show that the onset of gas flow into the system and the subsequent increase in pressure and stress can be well reproduced using heterogeneous distributions. Compared to a model with homogeneous material properties, heterogeneous distributions may allow the generation of dilatancy-controlled microfractures—an important feature with regard to the advective gas flow in bentonites. However, it can be observed that the heterogeneous distributions in LASGIT are less significant, as technical gaps or differences in material types could have a greater impact.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-023-11004-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bentonite ; Biogeosciences ; Continuum modeling ; Dilatancy ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Environmental Sciences &amp; Ecology ; Finite element method ; Fractures ; Gas flow ; Gas transport ; Geochemistry ; Geology ; Hydrology/Water Resources ; Localization ; Material properties ; Mathematical models ; Mercury ; Microfracture ; Microstructure ; Modelling ; Multiphase flow ; Numerical models ; Original Article ; porosimetry ; Porosity ; Radioactive materials ; Repositories ; Terrestrial Pollution ; Two phase flow ; Water Resources</subject><ispartof>Environmental earth sciences, 2023-07, Vol.82 (14), p.347-347, Article 347</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-8e1e1baee76d59b14acb5b16c28161ef5f119c189553d0cbebbf3ace31fd6fb83</citedby><cites>FETCH-LOGICAL-c423t-8e1e1baee76d59b14acb5b16c28161ef5f119c189553d0cbebbf3ace31fd6fb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-023-11004-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-023-11004-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2424424$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Radeisen, Eike</creatorcontrib><creatorcontrib>Shao, Hua</creatorcontrib><creatorcontrib>Pitz, Michael</creatorcontrib><creatorcontrib>Hesser, Jürgen</creatorcontrib><creatorcontrib>Wang, Wenqing</creatorcontrib><creatorcontrib>Federal Institute for Geosciences and Natural Resources (BGR), Hanover (Germany)</creatorcontrib><title>Derivation of heterogeneous material distributions and their sensitivity to HM-coupled two-phase flow models exemplified with the LASGIT experiment</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Advective gas transport in bentonite, a possible buffer material in repositories for radioactive materials, is difficult to simulate in numerical continuum models, partly due to the complicated microstructure of bentonite. To generate reliable models of repositories nevertheless, spatially distributed heterogeneous material properties can be used to allow localization of gas flow. In this study, a pore-size-dependent stochastic approach of the gas entry pressure is derived from Mercury Intrusion Porosimetry, which is used to replicate measurements from the LASGIT experiment. In addition, three benchmark tests are simulated to investigate the dependence of heterogeneous distributions of material properties on the mesh discretization, the temporal dependence, and the coupling between the processes influenced by the heterogeneous parameters. The numerical modeling results of the LASGIT experiment show that the onset of gas flow into the system and the subsequent increase in pressure and stress can be well reproduced using heterogeneous distributions. Compared to a model with homogeneous material properties, heterogeneous distributions may allow the generation of dilatancy-controlled microfractures—an important feature with regard to the advective gas flow in bentonites. However, it can be observed that the heterogeneous distributions in LASGIT are less significant, as technical gaps or differences in material types could have a greater impact.</description><subject>Bentonite</subject><subject>Biogeosciences</subject><subject>Continuum modeling</subject><subject>Dilatancy</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Finite element method</subject><subject>Fractures</subject><subject>Gas flow</subject><subject>Gas transport</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hydrology/Water Resources</subject><subject>Localization</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Mercury</subject><subject>Microfracture</subject><subject>Microstructure</subject><subject>Modelling</subject><subject>Multiphase flow</subject><subject>Numerical models</subject><subject>Original Article</subject><subject>porosimetry</subject><subject>Porosity</subject><subject>Radioactive materials</subject><subject>Repositories</subject><subject>Terrestrial Pollution</subject><subject>Two phase flow</subject><subject>Water Resources</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kcFO3DAQhiPUSqCFF-jJopdeUjx2YpIjoi0gbdVD6dmynTExSuLUdljgNfrC9RLUSj3UsuSx5_tnNP6L4h3Qj0Dp-VkEJkRdUsZLyA9V-XxQHEEjRClY2775Ezf0sDiJ8Z7mxYG3VBwVvz5hcA8qOT8Rb0mPCYO_wwn9Esmo8s2pgXQupuD0ssciUVNHUo8ukIhTdMk9uPREkifXX0vjl3nAnN_5cu5VRGIHvyOj73CIBB9xnAdnXSZ2LvX7MmR78f3q5jbn5txsxCkdF2-tGiKevJ6b4seXz7eX1-X229XN5cW2NBXjqWwQELRCPBdd3WqolNG1BmFYAwLQ1hagNdC0dc07ajRqbbkyyMF2wuqGb4rTta6PycloXELTGz9NaJJkFavyztCHFZqD_7lgTHJ00eAwqJc_khxqDlUDucmmeP8Peu-XMOURJGs4E1zwimaKrZQJPsaAVs55bBWeJFC591Oufsrsp3zxUz5nEV9FMcPTHYa_pf-j-g1jWaah</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Radeisen, Eike</creator><creator>Shao, Hua</creator><creator>Pitz, Michael</creator><creator>Hesser, Jürgen</creator><creator>Wang, Wenqing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer-Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope></search><sort><creationdate>20230701</creationdate><title>Derivation of heterogeneous material distributions and their sensitivity to HM-coupled two-phase flow models exemplified with the LASGIT experiment</title><author>Radeisen, Eike ; Shao, Hua ; Pitz, Michael ; Hesser, Jürgen ; Wang, Wenqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-8e1e1baee76d59b14acb5b16c28161ef5f119c189553d0cbebbf3ace31fd6fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bentonite</topic><topic>Biogeosciences</topic><topic>Continuum modeling</topic><topic>Dilatancy</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Finite element method</topic><topic>Fractures</topic><topic>Gas flow</topic><topic>Gas transport</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hydrology/Water Resources</topic><topic>Localization</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Mercury</topic><topic>Microfracture</topic><topic>Microstructure</topic><topic>Modelling</topic><topic>Multiphase flow</topic><topic>Numerical models</topic><topic>Original Article</topic><topic>porosimetry</topic><topic>Porosity</topic><topic>Radioactive materials</topic><topic>Repositories</topic><topic>Terrestrial Pollution</topic><topic>Two phase flow</topic><topic>Water Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radeisen, Eike</creatorcontrib><creatorcontrib>Shao, Hua</creatorcontrib><creatorcontrib>Pitz, Michael</creatorcontrib><creatorcontrib>Hesser, Jürgen</creatorcontrib><creatorcontrib>Wang, Wenqing</creatorcontrib><creatorcontrib>Federal Institute for Geosciences and Natural Resources (BGR), Hanover (Germany)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radeisen, Eike</au><au>Shao, Hua</au><au>Pitz, Michael</au><au>Hesser, Jürgen</au><au>Wang, Wenqing</au><aucorp>Federal Institute for Geosciences and Natural Resources (BGR), Hanover (Germany)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of heterogeneous material distributions and their sensitivity to HM-coupled two-phase flow models exemplified with the LASGIT experiment</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>82</volume><issue>14</issue><spage>347</spage><epage>347</epage><pages>347-347</pages><artnum>347</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Advective gas transport in bentonite, a possible buffer material in repositories for radioactive materials, is difficult to simulate in numerical continuum models, partly due to the complicated microstructure of bentonite. To generate reliable models of repositories nevertheless, spatially distributed heterogeneous material properties can be used to allow localization of gas flow. In this study, a pore-size-dependent stochastic approach of the gas entry pressure is derived from Mercury Intrusion Porosimetry, which is used to replicate measurements from the LASGIT experiment. In addition, three benchmark tests are simulated to investigate the dependence of heterogeneous distributions of material properties on the mesh discretization, the temporal dependence, and the coupling between the processes influenced by the heterogeneous parameters. The numerical modeling results of the LASGIT experiment show that the onset of gas flow into the system and the subsequent increase in pressure and stress can be well reproduced using heterogeneous distributions. Compared to a model with homogeneous material properties, heterogeneous distributions may allow the generation of dilatancy-controlled microfractures—an important feature with regard to the advective gas flow in bentonites. However, it can be observed that the heterogeneous distributions in LASGIT are less significant, as technical gaps or differences in material types could have a greater impact.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-023-11004-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2023-07, Vol.82 (14), p.347-347, Article 347
issn 1866-6280
1866-6299
language eng
recordid cdi_osti_scitechconnect_2424424
source Springer Nature - Complete Springer Journals
subjects Bentonite
Biogeosciences
Continuum modeling
Dilatancy
Earth and Environmental Science
Earth Sciences
Environmental Science and Engineering
Environmental Sciences & Ecology
Finite element method
Fractures
Gas flow
Gas transport
Geochemistry
Geology
Hydrology/Water Resources
Localization
Material properties
Mathematical models
Mercury
Microfracture
Microstructure
Modelling
Multiphase flow
Numerical models
Original Article
porosimetry
Porosity
Radioactive materials
Repositories
Terrestrial Pollution
Two phase flow
Water Resources
title Derivation of heterogeneous material distributions and their sensitivity to HM-coupled two-phase flow models exemplified with the LASGIT experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20heterogeneous%20material%20distributions%20and%20their%20sensitivity%20to%20HM-coupled%20two-phase%20flow%20models%20exemplified%20with%20the%20LASGIT%20experiment&rft.jtitle=Environmental%20earth%20sciences&rft.au=Radeisen,%20Eike&rft.aucorp=Federal%20Institute%20for%20Geosciences%20and%20Natural%20Resources%20(BGR),%20Hanover%20(Germany)&rft.date=2023-07-01&rft.volume=82&rft.issue=14&rft.spage=347&rft.epage=347&rft.pages=347-347&rft.artnum=347&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-023-11004-z&rft_dat=%3Cproquest_osti_%3E3153148155%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832636340&rft_id=info:pmid/&rfr_iscdi=true