Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities

Abstract We present a method for deterministically solving the frequency and temperature dependent phonon radiative transport (PRT) equation in the single-mode relaxation time (SMRT) approximation in the self-adjoint angular flux (SAAF) form. To handle the nonlinear coupling between the phonon inten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASME journal of heat and mass transfer 2022-11, Vol.145 (1)
Hauptverfasser: Whitman, Nicholas H., Palmer, Todd S., Anistratov, Dmitriy Y., Greaney, P. Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title ASME journal of heat and mass transfer
container_volume 145
creator Whitman, Nicholas H.
Palmer, Todd S.
Anistratov, Dmitriy Y.
Greaney, P. Alex
description Abstract We present a method for deterministically solving the frequency and temperature dependent phonon radiative transport (PRT) equation in the single-mode relaxation time (SMRT) approximation in the self-adjoint angular flux (SAAF) form. To handle the nonlinear coupling between the phonon intensities and the material temperature, we apply a linearization approach that is similar to one in thermal radiative transport. This procedure leads to the PRT equation with pseudo-scattering. The method presented includes acceleration of both the inner pseudo-scattering source iterations and outer temperature iteration with a gray diffusion synthetic acceleration (DSA) and Anderson acceleration, respectively. We use the finite-element method to discretize the PRT equation in space and the method of discrete ordinates (SN) for angular discretization. The proposed method is verified by a gray method of manufactured solutions problem and demonstrated on a problem using temperature and direction dependent multigroup data from lithium aluminate (LiAlO2). The iterative performance of the acceleration method in each test is then compared to the unaccelerated method.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2424125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424125</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24241253</originalsourceid><addsrcrecordid>eNqNjb0KAjEQhFMoKOo7LPZCjHeerfiDFoLFgeURciu3cm4ku76_EXwAqym--WYGZuw2K7fYFKUdmZnIw1rrqrWtltXYNNsQsMfkFVvYo2J6EpMoBbh2kSNDnTzLKyaFG2kHu8iSObLCJUuJfA81Pl_fiXdC8NzCmTMXUkKZmuHd94KzX07M_Hiod6dFzB-NBFIMXYjMGLRxhSuWrlz9VfoAp99Fbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities</title><source>ASME Transactions Journals (Current)</source><creator>Whitman, Nicholas H. ; Palmer, Todd S. ; Anistratov, Dmitriy Y. ; Greaney, P. Alex</creator><creatorcontrib>Whitman, Nicholas H. ; Palmer, Todd S. ; Anistratov, Dmitriy Y. ; Greaney, P. Alex ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Abstract We present a method for deterministically solving the frequency and temperature dependent phonon radiative transport (PRT) equation in the single-mode relaxation time (SMRT) approximation in the self-adjoint angular flux (SAAF) form. To handle the nonlinear coupling between the phonon intensities and the material temperature, we apply a linearization approach that is similar to one in thermal radiative transport. This procedure leads to the PRT equation with pseudo-scattering. The method presented includes acceleration of both the inner pseudo-scattering source iterations and outer temperature iteration with a gray diffusion synthetic acceleration (DSA) and Anderson acceleration, respectively. We use the finite-element method to discretize the PRT equation in space and the method of discrete ordinates (SN) for angular discretization. The proposed method is verified by a gray method of manufactured solutions problem and demonstrated on a problem using temperature and direction dependent multigroup data from lithium aluminate (LiAlO2). The iterative performance of the acceleration method in each test is then compared to the unaccelerated method.</description><identifier>ISSN: 2832-8450</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Engineering ; Thermodynamics</subject><ispartof>ASME journal of heat and mass transfer, 2022-11, Vol.145 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2424125$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitman, Nicholas H.</creatorcontrib><creatorcontrib>Palmer, Todd S.</creatorcontrib><creatorcontrib>Anistratov, Dmitriy Y.</creatorcontrib><creatorcontrib>Greaney, P. Alex</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities</title><title>ASME journal of heat and mass transfer</title><description>Abstract We present a method for deterministically solving the frequency and temperature dependent phonon radiative transport (PRT) equation in the single-mode relaxation time (SMRT) approximation in the self-adjoint angular flux (SAAF) form. To handle the nonlinear coupling between the phonon intensities and the material temperature, we apply a linearization approach that is similar to one in thermal radiative transport. This procedure leads to the PRT equation with pseudo-scattering. The method presented includes acceleration of both the inner pseudo-scattering source iterations and outer temperature iteration with a gray diffusion synthetic acceleration (DSA) and Anderson acceleration, respectively. We use the finite-element method to discretize the PRT equation in space and the method of discrete ordinates (SN) for angular discretization. The proposed method is verified by a gray method of manufactured solutions problem and demonstrated on a problem using temperature and direction dependent multigroup data from lithium aluminate (LiAlO2). The iterative performance of the acceleration method in each test is then compared to the unaccelerated method.</description><subject>Engineering</subject><subject>Thermodynamics</subject><issn>2832-8450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjb0KAjEQhFMoKOo7LPZCjHeerfiDFoLFgeURciu3cm4ku76_EXwAqym--WYGZuw2K7fYFKUdmZnIw1rrqrWtltXYNNsQsMfkFVvYo2J6EpMoBbh2kSNDnTzLKyaFG2kHu8iSObLCJUuJfA81Pl_fiXdC8NzCmTMXUkKZmuHd94KzX07M_Hiod6dFzB-NBFIMXYjMGLRxhSuWrlz9VfoAp99Fbg</recordid><startdate>20221117</startdate><enddate>20221117</enddate><creator>Whitman, Nicholas H.</creator><creator>Palmer, Todd S.</creator><creator>Anistratov, Dmitriy Y.</creator><creator>Greaney, P. Alex</creator><general>ASME</general><scope>OTOTI</scope></search><sort><creationdate>20221117</creationdate><title>Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities</title><author>Whitman, Nicholas H. ; Palmer, Todd S. ; Anistratov, Dmitriy Y. ; Greaney, P. Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24241253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitman, Nicholas H.</creatorcontrib><creatorcontrib>Palmer, Todd S.</creatorcontrib><creatorcontrib>Anistratov, Dmitriy Y.</creatorcontrib><creatorcontrib>Greaney, P. Alex</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>ASME journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitman, Nicholas H.</au><au>Palmer, Todd S.</au><au>Anistratov, Dmitriy Y.</au><au>Greaney, P. Alex</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities</atitle><jtitle>ASME journal of heat and mass transfer</jtitle><date>2022-11-17</date><risdate>2022</risdate><volume>145</volume><issue>1</issue><issn>2832-8450</issn><abstract>Abstract We present a method for deterministically solving the frequency and temperature dependent phonon radiative transport (PRT) equation in the single-mode relaxation time (SMRT) approximation in the self-adjoint angular flux (SAAF) form. To handle the nonlinear coupling between the phonon intensities and the material temperature, we apply a linearization approach that is similar to one in thermal radiative transport. This procedure leads to the PRT equation with pseudo-scattering. The method presented includes acceleration of both the inner pseudo-scattering source iterations and outer temperature iteration with a gray diffusion synthetic acceleration (DSA) and Anderson acceleration, respectively. We use the finite-element method to discretize the PRT equation in space and the method of discrete ordinates (SN) for angular discretization. The proposed method is verified by a gray method of manufactured solutions problem and demonstrated on a problem using temperature and direction dependent multigroup data from lithium aluminate (LiAlO2). The iterative performance of the acceleration method in each test is then compared to the unaccelerated method.</abstract><cop>United States</cop><pub>ASME</pub></addata></record>
fulltext fulltext
identifier ISSN: 2832-8450
ispartof ASME journal of heat and mass transfer, 2022-11, Vol.145 (1)
issn 2832-8450
language eng
recordid cdi_osti_scitechconnect_2424125
source ASME Transactions Journals (Current)
subjects Engineering
Thermodynamics
title Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Deterministic%20Phonon%20Transport%20With%20Consistent%20Material%20Temperature%20and%20Intensities&rft.jtitle=ASME%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Whitman,%20Nicholas%20H.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2022-11-17&rft.volume=145&rft.issue=1&rft.issn=2832-8450&rft_id=info:doi/&rft_dat=%3Costi%3E2424125%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true