Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities
Abstract We present a method for deterministically solving the frequency and temperature dependent phonon radiative transport (PRT) equation in the single-mode relaxation time (SMRT) approximation in the self-adjoint angular flux (SAAF) form. To handle the nonlinear coupling between the phonon inten...
Gespeichert in:
Veröffentlicht in: | ASME journal of heat and mass transfer 2022-11, Vol.145 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | ASME journal of heat and mass transfer |
container_volume | 145 |
creator | Whitman, Nicholas H. Palmer, Todd S. Anistratov, Dmitriy Y. Greaney, P. Alex |
description | Abstract We present a method for deterministically solving the frequency and temperature dependent phonon radiative transport (PRT) equation in the single-mode relaxation time (SMRT) approximation in the self-adjoint angular flux (SAAF) form. To handle the nonlinear coupling between the phonon intensities and the material temperature, we apply a linearization approach that is similar to one in thermal radiative transport. This procedure leads to the PRT equation with pseudo-scattering. The method presented includes acceleration of both the inner pseudo-scattering source iterations and outer temperature iteration with a gray diffusion synthetic acceleration (DSA) and Anderson acceleration, respectively. We use the finite-element method to discretize the PRT equation in space and the method of discrete ordinates (SN) for angular discretization. The proposed method is verified by a gray method of manufactured solutions problem and demonstrated on a problem using temperature and direction dependent multigroup data from lithium aluminate (LiAlO2). The iterative performance of the acceleration method in each test is then compared to the unaccelerated method. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2424125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424125</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24241253</originalsourceid><addsrcrecordid>eNqNjb0KAjEQhFMoKOo7LPZCjHeerfiDFoLFgeURciu3cm4ku76_EXwAqym--WYGZuw2K7fYFKUdmZnIw1rrqrWtltXYNNsQsMfkFVvYo2J6EpMoBbh2kSNDnTzLKyaFG2kHu8iSObLCJUuJfA81Pl_fiXdC8NzCmTMXUkKZmuHd94KzX07M_Hiod6dFzB-NBFIMXYjMGLRxhSuWrlz9VfoAp99Fbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities</title><source>ASME Transactions Journals (Current)</source><creator>Whitman, Nicholas H. ; Palmer, Todd S. ; Anistratov, Dmitriy Y. ; Greaney, P. Alex</creator><creatorcontrib>Whitman, Nicholas H. ; Palmer, Todd S. ; Anistratov, Dmitriy Y. ; Greaney, P. Alex ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Abstract We present a method for deterministically solving the frequency and temperature dependent phonon radiative transport (PRT) equation in the single-mode relaxation time (SMRT) approximation in the self-adjoint angular flux (SAAF) form. To handle the nonlinear coupling between the phonon intensities and the material temperature, we apply a linearization approach that is similar to one in thermal radiative transport. This procedure leads to the PRT equation with pseudo-scattering. The method presented includes acceleration of both the inner pseudo-scattering source iterations and outer temperature iteration with a gray diffusion synthetic acceleration (DSA) and Anderson acceleration, respectively. We use the finite-element method to discretize the PRT equation in space and the method of discrete ordinates (SN) for angular discretization. The proposed method is verified by a gray method of manufactured solutions problem and demonstrated on a problem using temperature and direction dependent multigroup data from lithium aluminate (LiAlO2). The iterative performance of the acceleration method in each test is then compared to the unaccelerated method.</description><identifier>ISSN: 2832-8450</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Engineering ; Thermodynamics</subject><ispartof>ASME journal of heat and mass transfer, 2022-11, Vol.145 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2424125$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitman, Nicholas H.</creatorcontrib><creatorcontrib>Palmer, Todd S.</creatorcontrib><creatorcontrib>Anistratov, Dmitriy Y.</creatorcontrib><creatorcontrib>Greaney, P. Alex</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities</title><title>ASME journal of heat and mass transfer</title><description>Abstract We present a method for deterministically solving the frequency and temperature dependent phonon radiative transport (PRT) equation in the single-mode relaxation time (SMRT) approximation in the self-adjoint angular flux (SAAF) form. To handle the nonlinear coupling between the phonon intensities and the material temperature, we apply a linearization approach that is similar to one in thermal radiative transport. This procedure leads to the PRT equation with pseudo-scattering. The method presented includes acceleration of both the inner pseudo-scattering source iterations and outer temperature iteration with a gray diffusion synthetic acceleration (DSA) and Anderson acceleration, respectively. We use the finite-element method to discretize the PRT equation in space and the method of discrete ordinates (SN) for angular discretization. The proposed method is verified by a gray method of manufactured solutions problem and demonstrated on a problem using temperature and direction dependent multigroup data from lithium aluminate (LiAlO2). The iterative performance of the acceleration method in each test is then compared to the unaccelerated method.</description><subject>Engineering</subject><subject>Thermodynamics</subject><issn>2832-8450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjb0KAjEQhFMoKOo7LPZCjHeerfiDFoLFgeURciu3cm4ku76_EXwAqym--WYGZuw2K7fYFKUdmZnIw1rrqrWtltXYNNsQsMfkFVvYo2J6EpMoBbh2kSNDnTzLKyaFG2kHu8iSObLCJUuJfA81Pl_fiXdC8NzCmTMXUkKZmuHd94KzX07M_Hiod6dFzB-NBFIMXYjMGLRxhSuWrlz9VfoAp99Fbg</recordid><startdate>20221117</startdate><enddate>20221117</enddate><creator>Whitman, Nicholas H.</creator><creator>Palmer, Todd S.</creator><creator>Anistratov, Dmitriy Y.</creator><creator>Greaney, P. Alex</creator><general>ASME</general><scope>OTOTI</scope></search><sort><creationdate>20221117</creationdate><title>Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities</title><author>Whitman, Nicholas H. ; Palmer, Todd S. ; Anistratov, Dmitriy Y. ; Greaney, P. Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24241253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitman, Nicholas H.</creatorcontrib><creatorcontrib>Palmer, Todd S.</creatorcontrib><creatorcontrib>Anistratov, Dmitriy Y.</creatorcontrib><creatorcontrib>Greaney, P. Alex</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>ASME journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitman, Nicholas H.</au><au>Palmer, Todd S.</au><au>Anistratov, Dmitriy Y.</au><au>Greaney, P. Alex</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities</atitle><jtitle>ASME journal of heat and mass transfer</jtitle><date>2022-11-17</date><risdate>2022</risdate><volume>145</volume><issue>1</issue><issn>2832-8450</issn><abstract>Abstract We present a method for deterministically solving the frequency and temperature dependent phonon radiative transport (PRT) equation in the single-mode relaxation time (SMRT) approximation in the self-adjoint angular flux (SAAF) form. To handle the nonlinear coupling between the phonon intensities and the material temperature, we apply a linearization approach that is similar to one in thermal radiative transport. This procedure leads to the PRT equation with pseudo-scattering. The method presented includes acceleration of both the inner pseudo-scattering source iterations and outer temperature iteration with a gray diffusion synthetic acceleration (DSA) and Anderson acceleration, respectively. We use the finite-element method to discretize the PRT equation in space and the method of discrete ordinates (SN) for angular discretization. The proposed method is verified by a gray method of manufactured solutions problem and demonstrated on a problem using temperature and direction dependent multigroup data from lithium aluminate (LiAlO2). The iterative performance of the acceleration method in each test is then compared to the unaccelerated method.</abstract><cop>United States</cop><pub>ASME</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2832-8450 |
ispartof | ASME journal of heat and mass transfer, 2022-11, Vol.145 (1) |
issn | 2832-8450 |
language | eng |
recordid | cdi_osti_scitechconnect_2424125 |
source | ASME Transactions Journals (Current) |
subjects | Engineering Thermodynamics |
title | Accelerated Deterministic Phonon Transport With Consistent Material Temperature and Intensities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Deterministic%20Phonon%20Transport%20With%20Consistent%20Material%20Temperature%20and%20Intensities&rft.jtitle=ASME%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Whitman,%20Nicholas%20H.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2022-11-17&rft.volume=145&rft.issue=1&rft.issn=2832-8450&rft_id=info:doi/&rft_dat=%3Costi%3E2424125%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |