Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs
Understanding the structure–property relationships of materials in order to supress thermal conductivity is crucial for developing efficient thermoelectric generators and thermal barrier coatings. Low thermal conductivity materials can often contain a single dominant phonon scattering mechanism. Her...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-06, Vol.11 (29), p.15739-15748 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15748 |
---|---|
container_issue | 29 |
container_start_page | 15739 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Newnham, Jon A Gibson, Quinn D Surta, T Wesley Morscher, Alexandra Manning, Troy D Daniels, Luke M Claridge, John B Rosseinsky, Matthew J |
description | Understanding the structure–property relationships of materials in order to supress thermal conductivity is crucial for developing efficient thermoelectric generators and thermal barrier coatings. Low thermal conductivity materials can often contain a single dominant phonon scattering mechanism. Here, we highlight how combining different structural features into one material can aid in the design and identification of new materials with low thermal conductivities. We synthesise two new mixed-anion materials, Bi8CsO8SeX7 (X = Cl and Br), with low thermal conductivities of 0.27(2) and 0.22(2) W m−1 K−1 respectively, measured along their c-axes at room temperature. The Bi8CsO8SeX7 materials possess a combination of bond strength hierarchies, Cs+ vacancies, and low frequency Cs+ rattling. These different features significantly inhibit phonon transport along different crystallographic directions. Due to sharp bond strength contrast between the van der Waals gaps and [Bi2O2]2+ layers, the Bi8CsO8SeX7 materials exhibit thermal conductivities |
doi_str_mv | 10.1039/d3ta01630g |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2424057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841913431</sourcerecordid><originalsourceid>FETCH-LOGICAL-o246t-95959ba8c440b0a3fd891fc585fe02367a5522c69f68b9bbfee9d5449350ae9d3</originalsourceid><addsrcrecordid>eNo9j0tLAzEUhYMoWGo3_oKgGwVH7-Q1ycKFHXxBoQsVupFhJpO0KW1GJ5lK_72Bivcu7ll853AuQuc53OZA1V1LYw25oLA8QiMCHLKCKXH8r6U8RZMQ1pBGAgilRuhz1v3guDL9tt5g3fl20NHtXNxj5_HUyTLM5ZtZFPhqge9xubnB0_4aN_vEbhvnnV_i1llreuMjDrFP9qFPUdsuOhvO0ImtN8FM_u4YfTw9vpcv2Wz-_Fo-zLKOMBEzxdM2tdSMQQM1ta1UudVccmuAUFHUnBOihbJCNqpprDGq5YwpyqFOko7RxSG3C9FVQbto9Cp9442OFWGEAS8SdHmAvvruezAhVutu6H3qVRHJcpVTRnP6CzNGX-c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841913431</pqid></control><display><type>article</type><title>Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Newnham, Jon A ; Gibson, Quinn D ; Surta, T Wesley ; Morscher, Alexandra ; Manning, Troy D ; Daniels, Luke M ; Claridge, John B ; Rosseinsky, Matthew J</creator><creatorcontrib>Newnham, Jon A ; Gibson, Quinn D ; Surta, T Wesley ; Morscher, Alexandra ; Manning, Troy D ; Daniels, Luke M ; Claridge, John B ; Rosseinsky, Matthew J ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><description>Understanding the structure–property relationships of materials in order to supress thermal conductivity is crucial for developing efficient thermoelectric generators and thermal barrier coatings. Low thermal conductivity materials can often contain a single dominant phonon scattering mechanism. Here, we highlight how combining different structural features into one material can aid in the design and identification of new materials with low thermal conductivities. We synthesise two new mixed-anion materials, Bi8CsO8SeX7 (X = Cl and Br), with low thermal conductivities of 0.27(2) and 0.22(2) W m−1 K−1 respectively, measured along their c-axes at room temperature. The Bi8CsO8SeX7 materials possess a combination of bond strength hierarchies, Cs+ vacancies, and low frequency Cs+ rattling. These different features significantly inhibit phonon transport along different crystallographic directions. Due to sharp bond strength contrast between the van der Waals gaps and [Bi2O2]2+ layers, the Bi8CsO8SeX7 materials exhibit thermal conductivities <50% of the theoretical minimum when measured along the stacking direction. Conversely, the thermal conductivity associated with the ab-plane is reduced by Cs+ rattling when compared to the structurally and compositionally related BiOCl.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta01630g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bonding strength ; Chemistry ; Conductivity ; Crystallography ; Energy & Fuels ; Heat conductivity ; Heat transfer ; Hierarchies ; Materials Science ; Mixed anions ; Phonons ; Room temperature ; Thermal barrier coatings ; Thermal conductivity ; Thermoelectric generators</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (29), p.15739-15748</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000198501222 ; 000000017020199X ; 0000000228826483 ; 0000000270776125 ; 0000000276244306 ; 0000000284087232 ; 0000000219102483 ; 0000000348496714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2424057$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Newnham, Jon A</creatorcontrib><creatorcontrib>Gibson, Quinn D</creatorcontrib><creatorcontrib>Surta, T Wesley</creatorcontrib><creatorcontrib>Morscher, Alexandra</creatorcontrib><creatorcontrib>Manning, Troy D</creatorcontrib><creatorcontrib>Daniels, Luke M</creatorcontrib><creatorcontrib>Claridge, John B</creatorcontrib><creatorcontrib>Rosseinsky, Matthew J</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><title>Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Understanding the structure–property relationships of materials in order to supress thermal conductivity is crucial for developing efficient thermoelectric generators and thermal barrier coatings. Low thermal conductivity materials can often contain a single dominant phonon scattering mechanism. Here, we highlight how combining different structural features into one material can aid in the design and identification of new materials with low thermal conductivities. We synthesise two new mixed-anion materials, Bi8CsO8SeX7 (X = Cl and Br), with low thermal conductivities of 0.27(2) and 0.22(2) W m−1 K−1 respectively, measured along their c-axes at room temperature. The Bi8CsO8SeX7 materials possess a combination of bond strength hierarchies, Cs+ vacancies, and low frequency Cs+ rattling. These different features significantly inhibit phonon transport along different crystallographic directions. Due to sharp bond strength contrast between the van der Waals gaps and [Bi2O2]2+ layers, the Bi8CsO8SeX7 materials exhibit thermal conductivities <50% of the theoretical minimum when measured along the stacking direction. Conversely, the thermal conductivity associated with the ab-plane is reduced by Cs+ rattling when compared to the structurally and compositionally related BiOCl.</description><subject>Bonding strength</subject><subject>Chemistry</subject><subject>Conductivity</subject><subject>Crystallography</subject><subject>Energy & Fuels</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Hierarchies</subject><subject>Materials Science</subject><subject>Mixed anions</subject><subject>Phonons</subject><subject>Room temperature</subject><subject>Thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thermoelectric generators</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLAzEUhYMoWGo3_oKgGwVH7-Q1ycKFHXxBoQsVupFhJpO0KW1GJ5lK_72Bivcu7ll853AuQuc53OZA1V1LYw25oLA8QiMCHLKCKXH8r6U8RZMQ1pBGAgilRuhz1v3guDL9tt5g3fl20NHtXNxj5_HUyTLM5ZtZFPhqge9xubnB0_4aN_vEbhvnnV_i1llreuMjDrFP9qFPUdsuOhvO0ImtN8FM_u4YfTw9vpcv2Wz-_Fo-zLKOMBEzxdM2tdSMQQM1ta1UudVccmuAUFHUnBOihbJCNqpprDGq5YwpyqFOko7RxSG3C9FVQbto9Cp9442OFWGEAS8SdHmAvvruezAhVutu6H3qVRHJcpVTRnP6CzNGX-c</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Newnham, Jon A</creator><creator>Gibson, Quinn D</creator><creator>Surta, T Wesley</creator><creator>Morscher, Alexandra</creator><creator>Manning, Troy D</creator><creator>Daniels, Luke M</creator><creator>Claridge, John B</creator><creator>Rosseinsky, Matthew J</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000198501222</orcidid><orcidid>https://orcid.org/000000017020199X</orcidid><orcidid>https://orcid.org/0000000228826483</orcidid><orcidid>https://orcid.org/0000000270776125</orcidid><orcidid>https://orcid.org/0000000276244306</orcidid><orcidid>https://orcid.org/0000000284087232</orcidid><orcidid>https://orcid.org/0000000219102483</orcidid><orcidid>https://orcid.org/0000000348496714</orcidid></search><sort><creationdate>20230630</creationdate><title>Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs</title><author>Newnham, Jon A ; Gibson, Quinn D ; Surta, T Wesley ; Morscher, Alexandra ; Manning, Troy D ; Daniels, Luke M ; Claridge, John B ; Rosseinsky, Matthew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o246t-95959ba8c440b0a3fd891fc585fe02367a5522c69f68b9bbfee9d5449350ae9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bonding strength</topic><topic>Chemistry</topic><topic>Conductivity</topic><topic>Crystallography</topic><topic>Energy & Fuels</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Hierarchies</topic><topic>Materials Science</topic><topic>Mixed anions</topic><topic>Phonons</topic><topic>Room temperature</topic><topic>Thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thermoelectric generators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newnham, Jon A</creatorcontrib><creatorcontrib>Gibson, Quinn D</creatorcontrib><creatorcontrib>Surta, T Wesley</creatorcontrib><creatorcontrib>Morscher, Alexandra</creatorcontrib><creatorcontrib>Manning, Troy D</creatorcontrib><creatorcontrib>Daniels, Luke M</creatorcontrib><creatorcontrib>Claridge, John B</creatorcontrib><creatorcontrib>Rosseinsky, Matthew J</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newnham, Jon A</au><au>Gibson, Quinn D</au><au>Surta, T Wesley</au><au>Morscher, Alexandra</au><au>Manning, Troy D</au><au>Daniels, Luke M</au><au>Claridge, John B</au><au>Rosseinsky, Matthew J</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-06-30</date><risdate>2023</risdate><volume>11</volume><issue>29</issue><spage>15739</spage><epage>15748</epage><pages>15739-15748</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Understanding the structure–property relationships of materials in order to supress thermal conductivity is crucial for developing efficient thermoelectric generators and thermal barrier coatings. Low thermal conductivity materials can often contain a single dominant phonon scattering mechanism. Here, we highlight how combining different structural features into one material can aid in the design and identification of new materials with low thermal conductivities. We synthesise two new mixed-anion materials, Bi8CsO8SeX7 (X = Cl and Br), with low thermal conductivities of 0.27(2) and 0.22(2) W m−1 K−1 respectively, measured along their c-axes at room temperature. The Bi8CsO8SeX7 materials possess a combination of bond strength hierarchies, Cs+ vacancies, and low frequency Cs+ rattling. These different features significantly inhibit phonon transport along different crystallographic directions. Due to sharp bond strength contrast between the van der Waals gaps and [Bi2O2]2+ layers, the Bi8CsO8SeX7 materials exhibit thermal conductivities <50% of the theoretical minimum when measured along the stacking direction. Conversely, the thermal conductivity associated with the ab-plane is reduced by Cs+ rattling when compared to the structurally and compositionally related BiOCl.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta01630g</doi><tpages>10</tpages><orcidid>https://orcid.org/0000000198501222</orcidid><orcidid>https://orcid.org/000000017020199X</orcidid><orcidid>https://orcid.org/0000000228826483</orcidid><orcidid>https://orcid.org/0000000270776125</orcidid><orcidid>https://orcid.org/0000000276244306</orcidid><orcidid>https://orcid.org/0000000284087232</orcidid><orcidid>https://orcid.org/0000000219102483</orcidid><orcidid>https://orcid.org/0000000348496714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (29), p.15739-15748 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_osti_scitechconnect_2424057 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Bonding strength Chemistry Conductivity Crystallography Energy & Fuels Heat conductivity Heat transfer Hierarchies Materials Science Mixed anions Phonons Room temperature Thermal barrier coatings Thermal conductivity Thermoelectric generators |
title | Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20thermal%20conductivity%20in%20Bi8CsO8SeX7%20(X%20=%20Cl,%20Br)%20by%20combining%20different%20structural%20motifs&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Newnham,%20Jon%20A&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Spallation%20Neutron%20Source%20(SNS)&rft.date=2023-06-30&rft.volume=11&rft.issue=29&rft.spage=15739&rft.epage=15748&rft.pages=15739-15748&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta01630g&rft_dat=%3Cproquest_osti_%3E2841913431%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841913431&rft_id=info:pmid/&rfr_iscdi=true |