Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs

Understanding the structure–property relationships of materials in order to supress thermal conductivity is crucial for developing efficient thermoelectric generators and thermal barrier coatings. Low thermal conductivity materials can often contain a single dominant phonon scattering mechanism. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-06, Vol.11 (29), p.15739-15748
Hauptverfasser: Newnham, Jon A, Gibson, Quinn D, Surta, T Wesley, Morscher, Alexandra, Manning, Troy D, Daniels, Luke M, Claridge, John B, Rosseinsky, Matthew J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15748
container_issue 29
container_start_page 15739
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Newnham, Jon A
Gibson, Quinn D
Surta, T Wesley
Morscher, Alexandra
Manning, Troy D
Daniels, Luke M
Claridge, John B
Rosseinsky, Matthew J
description Understanding the structure–property relationships of materials in order to supress thermal conductivity is crucial for developing efficient thermoelectric generators and thermal barrier coatings. Low thermal conductivity materials can often contain a single dominant phonon scattering mechanism. Here, we highlight how combining different structural features into one material can aid in the design and identification of new materials with low thermal conductivities. We synthesise two new mixed-anion materials, Bi8CsO8SeX7 (X = Cl and Br), with low thermal conductivities of 0.27(2) and 0.22(2) W m−1 K−1 respectively, measured along their c-axes at room temperature. The Bi8CsO8SeX7 materials possess a combination of bond strength hierarchies, Cs+ vacancies, and low frequency Cs+ rattling. These different features significantly inhibit phonon transport along different crystallographic directions. Due to sharp bond strength contrast between the van der Waals gaps and [Bi2O2]2+ layers, the Bi8CsO8SeX7 materials exhibit thermal conductivities
doi_str_mv 10.1039/d3ta01630g
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2424057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841913431</sourcerecordid><originalsourceid>FETCH-LOGICAL-o246t-95959ba8c440b0a3fd891fc585fe02367a5522c69f68b9bbfee9d5449350ae9d3</originalsourceid><addsrcrecordid>eNo9j0tLAzEUhYMoWGo3_oKgGwVH7-Q1ycKFHXxBoQsVupFhJpO0KW1GJ5lK_72Bivcu7ll853AuQuc53OZA1V1LYw25oLA8QiMCHLKCKXH8r6U8RZMQ1pBGAgilRuhz1v3guDL9tt5g3fl20NHtXNxj5_HUyTLM5ZtZFPhqge9xubnB0_4aN_vEbhvnnV_i1llreuMjDrFP9qFPUdsuOhvO0ImtN8FM_u4YfTw9vpcv2Wz-_Fo-zLKOMBEzxdM2tdSMQQM1ta1UudVccmuAUFHUnBOihbJCNqpprDGq5YwpyqFOko7RxSG3C9FVQbto9Cp9442OFWGEAS8SdHmAvvruezAhVutu6H3qVRHJcpVTRnP6CzNGX-c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841913431</pqid></control><display><type>article</type><title>Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Newnham, Jon A ; Gibson, Quinn D ; Surta, T Wesley ; Morscher, Alexandra ; Manning, Troy D ; Daniels, Luke M ; Claridge, John B ; Rosseinsky, Matthew J</creator><creatorcontrib>Newnham, Jon A ; Gibson, Quinn D ; Surta, T Wesley ; Morscher, Alexandra ; Manning, Troy D ; Daniels, Luke M ; Claridge, John B ; Rosseinsky, Matthew J ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><description>Understanding the structure–property relationships of materials in order to supress thermal conductivity is crucial for developing efficient thermoelectric generators and thermal barrier coatings. Low thermal conductivity materials can often contain a single dominant phonon scattering mechanism. Here, we highlight how combining different structural features into one material can aid in the design and identification of new materials with low thermal conductivities. We synthesise two new mixed-anion materials, Bi8CsO8SeX7 (X = Cl and Br), with low thermal conductivities of 0.27(2) and 0.22(2) W m−1 K−1 respectively, measured along their c-axes at room temperature. The Bi8CsO8SeX7 materials possess a combination of bond strength hierarchies, Cs+ vacancies, and low frequency Cs+ rattling. These different features significantly inhibit phonon transport along different crystallographic directions. Due to sharp bond strength contrast between the van der Waals gaps and [Bi2O2]2+ layers, the Bi8CsO8SeX7 materials exhibit thermal conductivities &lt;50% of the theoretical minimum when measured along the stacking direction. Conversely, the thermal conductivity associated with the ab-plane is reduced by Cs+ rattling when compared to the structurally and compositionally related BiOCl.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta01630g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bonding strength ; Chemistry ; Conductivity ; Crystallography ; Energy &amp; Fuels ; Heat conductivity ; Heat transfer ; Hierarchies ; Materials Science ; Mixed anions ; Phonons ; Room temperature ; Thermal barrier coatings ; Thermal conductivity ; Thermoelectric generators</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (29), p.15739-15748</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000198501222 ; 000000017020199X ; 0000000228826483 ; 0000000270776125 ; 0000000276244306 ; 0000000284087232 ; 0000000219102483 ; 0000000348496714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2424057$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Newnham, Jon A</creatorcontrib><creatorcontrib>Gibson, Quinn D</creatorcontrib><creatorcontrib>Surta, T Wesley</creatorcontrib><creatorcontrib>Morscher, Alexandra</creatorcontrib><creatorcontrib>Manning, Troy D</creatorcontrib><creatorcontrib>Daniels, Luke M</creatorcontrib><creatorcontrib>Claridge, John B</creatorcontrib><creatorcontrib>Rosseinsky, Matthew J</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><title>Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Understanding the structure–property relationships of materials in order to supress thermal conductivity is crucial for developing efficient thermoelectric generators and thermal barrier coatings. Low thermal conductivity materials can often contain a single dominant phonon scattering mechanism. Here, we highlight how combining different structural features into one material can aid in the design and identification of new materials with low thermal conductivities. We synthesise two new mixed-anion materials, Bi8CsO8SeX7 (X = Cl and Br), with low thermal conductivities of 0.27(2) and 0.22(2) W m−1 K−1 respectively, measured along their c-axes at room temperature. The Bi8CsO8SeX7 materials possess a combination of bond strength hierarchies, Cs+ vacancies, and low frequency Cs+ rattling. These different features significantly inhibit phonon transport along different crystallographic directions. Due to sharp bond strength contrast between the van der Waals gaps and [Bi2O2]2+ layers, the Bi8CsO8SeX7 materials exhibit thermal conductivities &lt;50% of the theoretical minimum when measured along the stacking direction. Conversely, the thermal conductivity associated with the ab-plane is reduced by Cs+ rattling when compared to the structurally and compositionally related BiOCl.</description><subject>Bonding strength</subject><subject>Chemistry</subject><subject>Conductivity</subject><subject>Crystallography</subject><subject>Energy &amp; Fuels</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Hierarchies</subject><subject>Materials Science</subject><subject>Mixed anions</subject><subject>Phonons</subject><subject>Room temperature</subject><subject>Thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thermoelectric generators</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLAzEUhYMoWGo3_oKgGwVH7-Q1ycKFHXxBoQsVupFhJpO0KW1GJ5lK_72Bivcu7ll853AuQuc53OZA1V1LYw25oLA8QiMCHLKCKXH8r6U8RZMQ1pBGAgilRuhz1v3guDL9tt5g3fl20NHtXNxj5_HUyTLM5ZtZFPhqge9xubnB0_4aN_vEbhvnnV_i1llreuMjDrFP9qFPUdsuOhvO0ImtN8FM_u4YfTw9vpcv2Wz-_Fo-zLKOMBEzxdM2tdSMQQM1ta1UudVccmuAUFHUnBOihbJCNqpprDGq5YwpyqFOko7RxSG3C9FVQbto9Cp9442OFWGEAS8SdHmAvvruezAhVutu6H3qVRHJcpVTRnP6CzNGX-c</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Newnham, Jon A</creator><creator>Gibson, Quinn D</creator><creator>Surta, T Wesley</creator><creator>Morscher, Alexandra</creator><creator>Manning, Troy D</creator><creator>Daniels, Luke M</creator><creator>Claridge, John B</creator><creator>Rosseinsky, Matthew J</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000198501222</orcidid><orcidid>https://orcid.org/000000017020199X</orcidid><orcidid>https://orcid.org/0000000228826483</orcidid><orcidid>https://orcid.org/0000000270776125</orcidid><orcidid>https://orcid.org/0000000276244306</orcidid><orcidid>https://orcid.org/0000000284087232</orcidid><orcidid>https://orcid.org/0000000219102483</orcidid><orcidid>https://orcid.org/0000000348496714</orcidid></search><sort><creationdate>20230630</creationdate><title>Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs</title><author>Newnham, Jon A ; Gibson, Quinn D ; Surta, T Wesley ; Morscher, Alexandra ; Manning, Troy D ; Daniels, Luke M ; Claridge, John B ; Rosseinsky, Matthew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o246t-95959ba8c440b0a3fd891fc585fe02367a5522c69f68b9bbfee9d5449350ae9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bonding strength</topic><topic>Chemistry</topic><topic>Conductivity</topic><topic>Crystallography</topic><topic>Energy &amp; Fuels</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Hierarchies</topic><topic>Materials Science</topic><topic>Mixed anions</topic><topic>Phonons</topic><topic>Room temperature</topic><topic>Thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thermoelectric generators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newnham, Jon A</creatorcontrib><creatorcontrib>Gibson, Quinn D</creatorcontrib><creatorcontrib>Surta, T Wesley</creatorcontrib><creatorcontrib>Morscher, Alexandra</creatorcontrib><creatorcontrib>Manning, Troy D</creatorcontrib><creatorcontrib>Daniels, Luke M</creatorcontrib><creatorcontrib>Claridge, John B</creatorcontrib><creatorcontrib>Rosseinsky, Matthew J</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newnham, Jon A</au><au>Gibson, Quinn D</au><au>Surta, T Wesley</au><au>Morscher, Alexandra</au><au>Manning, Troy D</au><au>Daniels, Luke M</au><au>Claridge, John B</au><au>Rosseinsky, Matthew J</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-06-30</date><risdate>2023</risdate><volume>11</volume><issue>29</issue><spage>15739</spage><epage>15748</epage><pages>15739-15748</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Understanding the structure–property relationships of materials in order to supress thermal conductivity is crucial for developing efficient thermoelectric generators and thermal barrier coatings. Low thermal conductivity materials can often contain a single dominant phonon scattering mechanism. Here, we highlight how combining different structural features into one material can aid in the design and identification of new materials with low thermal conductivities. We synthesise two new mixed-anion materials, Bi8CsO8SeX7 (X = Cl and Br), with low thermal conductivities of 0.27(2) and 0.22(2) W m−1 K−1 respectively, measured along their c-axes at room temperature. The Bi8CsO8SeX7 materials possess a combination of bond strength hierarchies, Cs+ vacancies, and low frequency Cs+ rattling. These different features significantly inhibit phonon transport along different crystallographic directions. Due to sharp bond strength contrast between the van der Waals gaps and [Bi2O2]2+ layers, the Bi8CsO8SeX7 materials exhibit thermal conductivities &lt;50% of the theoretical minimum when measured along the stacking direction. Conversely, the thermal conductivity associated with the ab-plane is reduced by Cs+ rattling when compared to the structurally and compositionally related BiOCl.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta01630g</doi><tpages>10</tpages><orcidid>https://orcid.org/0000000198501222</orcidid><orcidid>https://orcid.org/000000017020199X</orcidid><orcidid>https://orcid.org/0000000228826483</orcidid><orcidid>https://orcid.org/0000000270776125</orcidid><orcidid>https://orcid.org/0000000276244306</orcidid><orcidid>https://orcid.org/0000000284087232</orcidid><orcidid>https://orcid.org/0000000219102483</orcidid><orcidid>https://orcid.org/0000000348496714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (29), p.15739-15748
issn 2050-7488
2050-7496
language eng
recordid cdi_osti_scitechconnect_2424057
source Royal Society Of Chemistry Journals 2008-
subjects Bonding strength
Chemistry
Conductivity
Crystallography
Energy & Fuels
Heat conductivity
Heat transfer
Hierarchies
Materials Science
Mixed anions
Phonons
Room temperature
Thermal barrier coatings
Thermal conductivity
Thermoelectric generators
title Low thermal conductivity in Bi8CsO8SeX7 (X = Cl, Br) by combining different structural motifs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20thermal%20conductivity%20in%20Bi8CsO8SeX7%20(X%20=%20Cl,%20Br)%20by%20combining%20different%20structural%20motifs&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Newnham,%20Jon%20A&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Spallation%20Neutron%20Source%20(SNS)&rft.date=2023-06-30&rft.volume=11&rft.issue=29&rft.spage=15739&rft.epage=15748&rft.pages=15739-15748&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta01630g&rft_dat=%3Cproquest_osti_%3E2841913431%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841913431&rft_id=info:pmid/&rfr_iscdi=true