On relaxations of the max k-cut problem formulations

Here, a tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research letters 2023-09, Vol.51 (5), p.521-527
Hauptverfasser: Fakhimi, Ramin, Validi, Hamidreza, Hicks, Illya V., Terlaky, Tamás, Zuluaga, Luis F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 527
container_issue 5
container_start_page 521
container_title Operations research letters
container_volume 51
creator Fakhimi, Ramin
Validi, Hamidreza
Hicks, Illya V.
Terlaky, Tamás
Zuluaga, Luis F.
description Here, a tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In this paper, we explore four existing mixed integer optimization formulations of the max k-cut problem. Specifically, we show that the continuous relaxation of a binary quadratic optimization formulation of the problem is: (i) stronger than the continuous relaxation of two mixed integer linear optimization formulations and (ii) at least as strong as the continuous relaxation of a mixed integer semidefinite optimization formulation. We also conduct a set of experiments on multiple sets of instances of the max k-cut problem using state-of-the-art solvers that empirically confirm the theoretical results in item (i). Furthermore, these numerical results illustrate the advances in the efficiency of global non-convex quadratic optimization solvers and more general mixed integer nonlinear optimization solvers. As a result, these solvers provide a promising option to solve combinatorial optimization problems. Our codes and data are available on GitHub.
doi_str_mv 10.1016/j.orl.2023.08.001
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2424029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1016_j_orl_2023_08_001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-8bd0441316b04b1399929d2ff770fd5a0bd6e0203304c54d956208cfca4d2abb3</originalsourceid><addsrcrecordid>eNot0DtrwzAUhmENLTRN-wO6ie52jy62pbGEXgKBLO0sdCV2bStICqT_vg7pdODw8g0PQk8EagKkfRnqmMaaAmU1iBqA3KDV8u-qlnXdHbrPeQCAThCxQnw_4-RHfdalj3PGMeBy8HjSZ_xT2VPBxxTN6CccYppO47V6QLdBj9k__t81-n5_-9p8Vrv9x3bzuqsslbJUwjjgnDDSGuCGMCkllY6G0HUQXKPBuNYDBcaA24Y72bQUhA1Wc0e1MWyNnq-7MZdeZdsXbw82zrO3RVFOOVC5ROQa2RRzTj6oY-onnX4VAXXxUINaPNTFQ4FQiwf7AyI7VW4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On relaxations of the max k-cut problem formulations</title><source>Elsevier ScienceDirect Journals</source><creator>Fakhimi, Ramin ; Validi, Hamidreza ; Hicks, Illya V. ; Terlaky, Tamás ; Zuluaga, Luis F.</creator><creatorcontrib>Fakhimi, Ramin ; Validi, Hamidreza ; Hicks, Illya V. ; Terlaky, Tamás ; Zuluaga, Luis F. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>Here, a tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In this paper, we explore four existing mixed integer optimization formulations of the max k-cut problem. Specifically, we show that the continuous relaxation of a binary quadratic optimization formulation of the problem is: (i) stronger than the continuous relaxation of two mixed integer linear optimization formulations and (ii) at least as strong as the continuous relaxation of a mixed integer semidefinite optimization formulation. We also conduct a set of experiments on multiple sets of instances of the max k-cut problem using state-of-the-art solvers that empirically confirm the theoretical results in item (i). Furthermore, these numerical results illustrate the advances in the efficiency of global non-convex quadratic optimization solvers and more general mixed integer nonlinear optimization solvers. As a result, these solvers provide a promising option to solve combinatorial optimization problems. Our codes and data are available on GitHub.</description><identifier>ISSN: 0167-6377</identifier><identifier>DOI: 10.1016/j.orl.2023.08.001</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Continuous relaxation ; MATHEMATICS AND COMPUTING ; Mixed integer optimization ; Operations Research &amp; Management Science ; Semidefinite optimization ; The max k-cut problem</subject><ispartof>Operations research letters, 2023-09, Vol.51 (5), p.521-527</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-8bd0441316b04b1399929d2ff770fd5a0bd6e0203304c54d956208cfca4d2abb3</cites><orcidid>0000-0002-3294-2401 ; 0000-0001-8567-9718 ; 0000-0002-7815-796X ; 0000-0002-7983-7262 ; 0000000232942401 ; 0000000185679718 ; 0000000279837262 ; 000000027815796X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2424029$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fakhimi, Ramin</creatorcontrib><creatorcontrib>Validi, Hamidreza</creatorcontrib><creatorcontrib>Hicks, Illya V.</creatorcontrib><creatorcontrib>Terlaky, Tamás</creatorcontrib><creatorcontrib>Zuluaga, Luis F.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>On relaxations of the max k-cut problem formulations</title><title>Operations research letters</title><description>Here, a tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In this paper, we explore four existing mixed integer optimization formulations of the max k-cut problem. Specifically, we show that the continuous relaxation of a binary quadratic optimization formulation of the problem is: (i) stronger than the continuous relaxation of two mixed integer linear optimization formulations and (ii) at least as strong as the continuous relaxation of a mixed integer semidefinite optimization formulation. We also conduct a set of experiments on multiple sets of instances of the max k-cut problem using state-of-the-art solvers that empirically confirm the theoretical results in item (i). Furthermore, these numerical results illustrate the advances in the efficiency of global non-convex quadratic optimization solvers and more general mixed integer nonlinear optimization solvers. As a result, these solvers provide a promising option to solve combinatorial optimization problems. Our codes and data are available on GitHub.</description><subject>Continuous relaxation</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Mixed integer optimization</subject><subject>Operations Research &amp; Management Science</subject><subject>Semidefinite optimization</subject><subject>The max k-cut problem</subject><issn>0167-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNot0DtrwzAUhmENLTRN-wO6ie52jy62pbGEXgKBLO0sdCV2bStICqT_vg7pdODw8g0PQk8EagKkfRnqmMaaAmU1iBqA3KDV8u-qlnXdHbrPeQCAThCxQnw_4-RHfdalj3PGMeBy8HjSZ_xT2VPBxxTN6CccYppO47V6QLdBj9k__t81-n5_-9p8Vrv9x3bzuqsslbJUwjjgnDDSGuCGMCkllY6G0HUQXKPBuNYDBcaA24Y72bQUhA1Wc0e1MWyNnq-7MZdeZdsXbw82zrO3RVFOOVC5ROQa2RRzTj6oY-onnX4VAXXxUINaPNTFQ4FQiwf7AyI7VW4</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Fakhimi, Ramin</creator><creator>Validi, Hamidreza</creator><creator>Hicks, Illya V.</creator><creator>Terlaky, Tamás</creator><creator>Zuluaga, Luis F.</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3294-2401</orcidid><orcidid>https://orcid.org/0000-0001-8567-9718</orcidid><orcidid>https://orcid.org/0000-0002-7815-796X</orcidid><orcidid>https://orcid.org/0000-0002-7983-7262</orcidid><orcidid>https://orcid.org/0000000232942401</orcidid><orcidid>https://orcid.org/0000000185679718</orcidid><orcidid>https://orcid.org/0000000279837262</orcidid><orcidid>https://orcid.org/000000027815796X</orcidid></search><sort><creationdate>20230901</creationdate><title>On relaxations of the max k-cut problem formulations</title><author>Fakhimi, Ramin ; Validi, Hamidreza ; Hicks, Illya V. ; Terlaky, Tamás ; Zuluaga, Luis F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-8bd0441316b04b1399929d2ff770fd5a0bd6e0203304c54d956208cfca4d2abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Continuous relaxation</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Mixed integer optimization</topic><topic>Operations Research &amp; Management Science</topic><topic>Semidefinite optimization</topic><topic>The max k-cut problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fakhimi, Ramin</creatorcontrib><creatorcontrib>Validi, Hamidreza</creatorcontrib><creatorcontrib>Hicks, Illya V.</creatorcontrib><creatorcontrib>Terlaky, Tamás</creatorcontrib><creatorcontrib>Zuluaga, Luis F.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Operations research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fakhimi, Ramin</au><au>Validi, Hamidreza</au><au>Hicks, Illya V.</au><au>Terlaky, Tamás</au><au>Zuluaga, Luis F.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On relaxations of the max k-cut problem formulations</atitle><jtitle>Operations research letters</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>51</volume><issue>5</issue><spage>521</spage><epage>527</epage><pages>521-527</pages><issn>0167-6377</issn><abstract>Here, a tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In this paper, we explore four existing mixed integer optimization formulations of the max k-cut problem. Specifically, we show that the continuous relaxation of a binary quadratic optimization formulation of the problem is: (i) stronger than the continuous relaxation of two mixed integer linear optimization formulations and (ii) at least as strong as the continuous relaxation of a mixed integer semidefinite optimization formulation. We also conduct a set of experiments on multiple sets of instances of the max k-cut problem using state-of-the-art solvers that empirically confirm the theoretical results in item (i). Furthermore, these numerical results illustrate the advances in the efficiency of global non-convex quadratic optimization solvers and more general mixed integer nonlinear optimization solvers. As a result, these solvers provide a promising option to solve combinatorial optimization problems. Our codes and data are available on GitHub.</abstract><cop>United States</cop><pub>Elsevier</pub><doi>10.1016/j.orl.2023.08.001</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3294-2401</orcidid><orcidid>https://orcid.org/0000-0001-8567-9718</orcidid><orcidid>https://orcid.org/0000-0002-7815-796X</orcidid><orcidid>https://orcid.org/0000-0002-7983-7262</orcidid><orcidid>https://orcid.org/0000000232942401</orcidid><orcidid>https://orcid.org/0000000185679718</orcidid><orcidid>https://orcid.org/0000000279837262</orcidid><orcidid>https://orcid.org/000000027815796X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6377
ispartof Operations research letters, 2023-09, Vol.51 (5), p.521-527
issn 0167-6377
language eng
recordid cdi_osti_scitechconnect_2424029
source Elsevier ScienceDirect Journals
subjects Continuous relaxation
MATHEMATICS AND COMPUTING
Mixed integer optimization
Operations Research & Management Science
Semidefinite optimization
The max k-cut problem
title On relaxations of the max k-cut problem formulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20relaxations%20of%20the%20max%20k-cut%20problem%20formulations&rft.jtitle=Operations%20research%20letters&rft.au=Fakhimi,%20Ramin&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2023-09-01&rft.volume=51&rft.issue=5&rft.spage=521&rft.epage=527&rft.pages=521-527&rft.issn=0167-6377&rft_id=info:doi/10.1016/j.orl.2023.08.001&rft_dat=%3Ccrossref_osti_%3E10_1016_j_orl_2023_08_001%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true