On relaxations of the max k-cut problem formulations
Here, a tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In...
Gespeichert in:
Veröffentlicht in: | Operations research letters 2023-09, Vol.51 (5), p.521-527 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, a tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In this paper, we explore four existing mixed integer optimization formulations of the max k-cut problem. Specifically, we show that the continuous relaxation of a binary quadratic optimization formulation of the problem is: (i) stronger than the continuous relaxation of two mixed integer linear optimization formulations and (ii) at least as strong as the continuous relaxation of a mixed integer semidefinite optimization formulation. We also conduct a set of experiments on multiple sets of instances of the max k-cut problem using state-of-the-art solvers that empirically confirm the theoretical results in item (i). Furthermore, these numerical results illustrate the advances in the efficiency of global non-convex quadratic optimization solvers and more general mixed integer nonlinear optimization solvers. As a result, these solvers provide a promising option to solve combinatorial optimization problems. Our codes and data are available on GitHub. |
---|---|
ISSN: | 0167-6377 |
DOI: | 10.1016/j.orl.2023.08.001 |