Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode

During solid‐state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid‐state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state‐of‐the‐art Ni‐rich layered oxides (LiNi1‐x‐yC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-03, Vol.35 (10), p.e2207076-n/a
Hauptverfasser: Jo, Sugeun, Han, Jeongwoo, Seo, Sungjae, Kwon, Oh‐Sung, Choi, Subin, Zhang, Jin, Hyun, Hyejeong, Oh, Juhyun, Kim, Juwon, Chung, Jinkyu, Kim, Hwiho, Wang, Jian, Bae, Junho, Moon, Junyeob, Park, Yoon‐Cheol, Hong, Moon‐Hi, Kim, Miyoung, Liu, Yijin, Sohn, Il, Jung, Keeyoung, Lim, Jongwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e2207076
container_title Advanced materials (Weinheim)
container_volume 35
creator Jo, Sugeun
Han, Jeongwoo
Seo, Sungjae
Kwon, Oh‐Sung
Choi, Subin
Zhang, Jin
Hyun, Hyejeong
Oh, Juhyun
Kim, Juwon
Chung, Jinkyu
Kim, Hwiho
Wang, Jian
Bae, Junho
Moon, Junyeob
Park, Yoon‐Cheol
Hong, Moon‐Hi
Kim, Miyoung
Liu, Yijin
Sohn, Il
Jung, Keeyoung
Lim, Jongwoo
description During solid‐state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid‐state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state‐of‐the‐art Ni‐rich layered oxides (LiNi1‐x‐yCoxMnyO2, NRNCM) as cathode materials for lithium‐ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron‐based X‐ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature‐dependent reaction kinetics, the diffusivity of solid‐state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high‐energy/power density lithium‐ion batteries. High‐temperature calcination used for Li‐ion battery particle synthesis is chemically imaged. Various parallel and serial combinations of heterogeneous reactions, such as the thermal aerobic/anaerobic decomposition, Li2CO3 decomposition, Li2‐O insertion/diffusion, and O2 insertion/diffusion, prevail during the calcination reaction. The anaerobic decomposition of the precursor core slows down Li2‐O incorporation.
doi_str_mv 10.1002/adma.202207076
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2423931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759959637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4006-a9ff6c87a327855c5b030f7f98d273c4d47f32401417778e688e28de9a27a1b33</originalsourceid><addsrcrecordid>eNqF0c2KFDEUBeAgitOObl1KoRs31d4klb9l26POQIvgKLgL6dSt6QxVlbGSQnrnI_iMPolpexzBjatA-O4huYeQpxSWFIC9cu3glgwYAwVK3iMLKhitGzDiPlmA4aI2stEn5FFK1wBgJMiH5IRLobkEsSBfLmMf2p_ff1xml7H6iM7nEMfqHDNO8QpHDHlfnc1TGK-qtet9GN1vELtqE_IuzEMZvigXr10uI_uC8i62-Jg86Fyf8MnteUo-v33zaX1ebz68u1ivNrVvAGTtTNdJr5XjTGkhvNgCh051RrdMcd-0jeo4a4A2VCmlUWqNTLdoHFOObjk_Jc-PuTHlYJMPGf3Ox3FEny1rGDecFvTyiG6m-HXGlO0Qkse-dyPGOVmmhDHCSK4KffEPvY7zNJYv2MMLGRVlt0Utj8pPMaUJO3szhcFNe0vBHoqxh2LsXTFl4Nlt7LwdsL3jf5oowBzBt9Dj_j9xdnX2fvU3_Becx5nI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785215095</pqid></control><display><type>article</type><title>Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jo, Sugeun ; Han, Jeongwoo ; Seo, Sungjae ; Kwon, Oh‐Sung ; Choi, Subin ; Zhang, Jin ; Hyun, Hyejeong ; Oh, Juhyun ; Kim, Juwon ; Chung, Jinkyu ; Kim, Hwiho ; Wang, Jian ; Bae, Junho ; Moon, Junyeob ; Park, Yoon‐Cheol ; Hong, Moon‐Hi ; Kim, Miyoung ; Liu, Yijin ; Sohn, Il ; Jung, Keeyoung ; Lim, Jongwoo</creator><creatorcontrib>Jo, Sugeun ; Han, Jeongwoo ; Seo, Sungjae ; Kwon, Oh‐Sung ; Choi, Subin ; Zhang, Jin ; Hyun, Hyejeong ; Oh, Juhyun ; Kim, Juwon ; Chung, Jinkyu ; Kim, Hwiho ; Wang, Jian ; Bae, Junho ; Moon, Junyeob ; Park, Yoon‐Cheol ; Hong, Moon‐Hi ; Kim, Miyoung ; Liu, Yijin ; Sohn, Il ; Jung, Keeyoung ; Lim, Jongwoo ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><description>During solid‐state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid‐state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state‐of‐the‐art Ni‐rich layered oxides (LiNi1‐x‐yCoxMnyO2, NRNCM) as cathode materials for lithium‐ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron‐based X‐ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature‐dependent reaction kinetics, the diffusivity of solid‐state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high‐energy/power density lithium‐ion batteries. High‐temperature calcination used for Li‐ion battery particle synthesis is chemically imaged. Various parallel and serial combinations of heterogeneous reactions, such as the thermal aerobic/anaerobic decomposition, Li2CO3 decomposition, Li2‐O insertion/diffusion, and O2 insertion/diffusion, prevail during the calcination reaction. The anaerobic decomposition of the precursor core slows down Li2‐O incorporation.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202207076</identifier><identifier>PMID: 36583605</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Chemical composition ; Chemical synthesis ; Chemistry ; Electrode materials ; Heterogeneity ; Lithium-ion batteries ; Li‐ion batteries ; Mass spectrometry ; Mass transport ; Materials Science ; Nickel ; nickel‐rich cathodes ; Phase transitions ; phase transitions with solid‐state reaction ; Physics ; Reaction intermediates ; Reaction kinetics ; Reaction mechanisms ; Roasting ; Science &amp; Technology - Other Topics ; spatial distribution of local chemical compositions within the particles ; Synchrotrons ; synthesis during calcination ; Temperature dependence ; Transition metals</subject><ispartof>Advanced materials (Weinheim), 2023-03, Vol.35 (10), p.e2207076-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4006-a9ff6c87a327855c5b030f7f98d273c4d47f32401417778e688e28de9a27a1b33</citedby><cites>FETCH-LOGICAL-c4006-a9ff6c87a327855c5b030f7f98d273c4d47f32401417778e688e28de9a27a1b33</cites><orcidid>0000-0002-2832-0343 ; 0000-0003-1850-4701 ; 0000-0002-2379-8911 ; 0000-0003-4086-6477 ; 0000-0001-6523-2548 ; 0000-0002-8571-9182 ; 0000-0002-3897-7488 ; 0000-0002-8417-2488 ; 0000-0002-6606-6833 ; 0000-0001-8295-4331 ; 0000-0003-3783-997X ; 0000-0002-3143-1079 ; 0000-0001-7809-7912 ; 0000-0002-3332-2335 ; 0000000231431079 ; 0000000233322335 ; 000000033783997X ; 0000000223798911 ; 0000000340866477 ; 0000000318504701 ; 0000000284172488 ; 0000000285719182 ; 0000000238977488 ; 0000000165232548 ; 0000000228320343 ; 0000000266066833 ; 0000000178097912 ; 0000000182954331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202207076$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202207076$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36583605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2423931$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Sugeun</creatorcontrib><creatorcontrib>Han, Jeongwoo</creatorcontrib><creatorcontrib>Seo, Sungjae</creatorcontrib><creatorcontrib>Kwon, Oh‐Sung</creatorcontrib><creatorcontrib>Choi, Subin</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Hyun, Hyejeong</creatorcontrib><creatorcontrib>Oh, Juhyun</creatorcontrib><creatorcontrib>Kim, Juwon</creatorcontrib><creatorcontrib>Chung, Jinkyu</creatorcontrib><creatorcontrib>Kim, Hwiho</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Bae, Junho</creatorcontrib><creatorcontrib>Moon, Junyeob</creatorcontrib><creatorcontrib>Park, Yoon‐Cheol</creatorcontrib><creatorcontrib>Hong, Moon‐Hi</creatorcontrib><creatorcontrib>Kim, Miyoung</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Sohn, Il</creatorcontrib><creatorcontrib>Jung, Keeyoung</creatorcontrib><creatorcontrib>Lim, Jongwoo</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><title>Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>During solid‐state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid‐state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state‐of‐the‐art Ni‐rich layered oxides (LiNi1‐x‐yCoxMnyO2, NRNCM) as cathode materials for lithium‐ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron‐based X‐ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature‐dependent reaction kinetics, the diffusivity of solid‐state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high‐energy/power density lithium‐ion batteries. High‐temperature calcination used for Li‐ion battery particle synthesis is chemically imaged. Various parallel and serial combinations of heterogeneous reactions, such as the thermal aerobic/anaerobic decomposition, Li2CO3 decomposition, Li2‐O insertion/diffusion, and O2 insertion/diffusion, prevail during the calcination reaction. The anaerobic decomposition of the precursor core slows down Li2‐O incorporation.</description><subject>Cathodes</subject><subject>Chemical composition</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Electrode materials</subject><subject>Heterogeneity</subject><subject>Lithium-ion batteries</subject><subject>Li‐ion batteries</subject><subject>Mass spectrometry</subject><subject>Mass transport</subject><subject>Materials Science</subject><subject>Nickel</subject><subject>nickel‐rich cathodes</subject><subject>Phase transitions</subject><subject>phase transitions with solid‐state reaction</subject><subject>Physics</subject><subject>Reaction intermediates</subject><subject>Reaction kinetics</subject><subject>Reaction mechanisms</subject><subject>Roasting</subject><subject>Science &amp; Technology - Other Topics</subject><subject>spatial distribution of local chemical compositions within the particles</subject><subject>Synchrotrons</subject><subject>synthesis during calcination</subject><subject>Temperature dependence</subject><subject>Transition metals</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0c2KFDEUBeAgitOObl1KoRs31d4klb9l26POQIvgKLgL6dSt6QxVlbGSQnrnI_iMPolpexzBjatA-O4huYeQpxSWFIC9cu3glgwYAwVK3iMLKhitGzDiPlmA4aI2stEn5FFK1wBgJMiH5IRLobkEsSBfLmMf2p_ff1xml7H6iM7nEMfqHDNO8QpHDHlfnc1TGK-qtet9GN1vELtqE_IuzEMZvigXr10uI_uC8i62-Jg86Fyf8MnteUo-v33zaX1ebz68u1ivNrVvAGTtTNdJr5XjTGkhvNgCh051RrdMcd-0jeo4a4A2VCmlUWqNTLdoHFOObjk_Jc-PuTHlYJMPGf3Ox3FEny1rGDecFvTyiG6m-HXGlO0Qkse-dyPGOVmmhDHCSK4KffEPvY7zNJYv2MMLGRVlt0Utj8pPMaUJO3szhcFNe0vBHoqxh2LsXTFl4Nlt7LwdsL3jf5oowBzBt9Dj_j9xdnX2fvU3_Becx5nI</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Jo, Sugeun</creator><creator>Han, Jeongwoo</creator><creator>Seo, Sungjae</creator><creator>Kwon, Oh‐Sung</creator><creator>Choi, Subin</creator><creator>Zhang, Jin</creator><creator>Hyun, Hyejeong</creator><creator>Oh, Juhyun</creator><creator>Kim, Juwon</creator><creator>Chung, Jinkyu</creator><creator>Kim, Hwiho</creator><creator>Wang, Jian</creator><creator>Bae, Junho</creator><creator>Moon, Junyeob</creator><creator>Park, Yoon‐Cheol</creator><creator>Hong, Moon‐Hi</creator><creator>Kim, Miyoung</creator><creator>Liu, Yijin</creator><creator>Sohn, Il</creator><creator>Jung, Keeyoung</creator><creator>Lim, Jongwoo</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2832-0343</orcidid><orcidid>https://orcid.org/0000-0003-1850-4701</orcidid><orcidid>https://orcid.org/0000-0002-2379-8911</orcidid><orcidid>https://orcid.org/0000-0003-4086-6477</orcidid><orcidid>https://orcid.org/0000-0001-6523-2548</orcidid><orcidid>https://orcid.org/0000-0002-8571-9182</orcidid><orcidid>https://orcid.org/0000-0002-3897-7488</orcidid><orcidid>https://orcid.org/0000-0002-8417-2488</orcidid><orcidid>https://orcid.org/0000-0002-6606-6833</orcidid><orcidid>https://orcid.org/0000-0001-8295-4331</orcidid><orcidid>https://orcid.org/0000-0003-3783-997X</orcidid><orcidid>https://orcid.org/0000-0002-3143-1079</orcidid><orcidid>https://orcid.org/0000-0001-7809-7912</orcidid><orcidid>https://orcid.org/0000-0002-3332-2335</orcidid><orcidid>https://orcid.org/0000000231431079</orcidid><orcidid>https://orcid.org/0000000233322335</orcidid><orcidid>https://orcid.org/000000033783997X</orcidid><orcidid>https://orcid.org/0000000223798911</orcidid><orcidid>https://orcid.org/0000000340866477</orcidid><orcidid>https://orcid.org/0000000318504701</orcidid><orcidid>https://orcid.org/0000000284172488</orcidid><orcidid>https://orcid.org/0000000285719182</orcidid><orcidid>https://orcid.org/0000000238977488</orcidid><orcidid>https://orcid.org/0000000165232548</orcidid><orcidid>https://orcid.org/0000000228320343</orcidid><orcidid>https://orcid.org/0000000266066833</orcidid><orcidid>https://orcid.org/0000000178097912</orcidid><orcidid>https://orcid.org/0000000182954331</orcidid></search><sort><creationdate>20230301</creationdate><title>Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode</title><author>Jo, Sugeun ; Han, Jeongwoo ; Seo, Sungjae ; Kwon, Oh‐Sung ; Choi, Subin ; Zhang, Jin ; Hyun, Hyejeong ; Oh, Juhyun ; Kim, Juwon ; Chung, Jinkyu ; Kim, Hwiho ; Wang, Jian ; Bae, Junho ; Moon, Junyeob ; Park, Yoon‐Cheol ; Hong, Moon‐Hi ; Kim, Miyoung ; Liu, Yijin ; Sohn, Il ; Jung, Keeyoung ; Lim, Jongwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4006-a9ff6c87a327855c5b030f7f98d273c4d47f32401417778e688e28de9a27a1b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>Chemical composition</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Electrode materials</topic><topic>Heterogeneity</topic><topic>Lithium-ion batteries</topic><topic>Li‐ion batteries</topic><topic>Mass spectrometry</topic><topic>Mass transport</topic><topic>Materials Science</topic><topic>Nickel</topic><topic>nickel‐rich cathodes</topic><topic>Phase transitions</topic><topic>phase transitions with solid‐state reaction</topic><topic>Physics</topic><topic>Reaction intermediates</topic><topic>Reaction kinetics</topic><topic>Reaction mechanisms</topic><topic>Roasting</topic><topic>Science &amp; Technology - Other Topics</topic><topic>spatial distribution of local chemical compositions within the particles</topic><topic>Synchrotrons</topic><topic>synthesis during calcination</topic><topic>Temperature dependence</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Sugeun</creatorcontrib><creatorcontrib>Han, Jeongwoo</creatorcontrib><creatorcontrib>Seo, Sungjae</creatorcontrib><creatorcontrib>Kwon, Oh‐Sung</creatorcontrib><creatorcontrib>Choi, Subin</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Hyun, Hyejeong</creatorcontrib><creatorcontrib>Oh, Juhyun</creatorcontrib><creatorcontrib>Kim, Juwon</creatorcontrib><creatorcontrib>Chung, Jinkyu</creatorcontrib><creatorcontrib>Kim, Hwiho</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Bae, Junho</creatorcontrib><creatorcontrib>Moon, Junyeob</creatorcontrib><creatorcontrib>Park, Yoon‐Cheol</creatorcontrib><creatorcontrib>Hong, Moon‐Hi</creatorcontrib><creatorcontrib>Kim, Miyoung</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Sohn, Il</creatorcontrib><creatorcontrib>Jung, Keeyoung</creatorcontrib><creatorcontrib>Lim, Jongwoo</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Sugeun</au><au>Han, Jeongwoo</au><au>Seo, Sungjae</au><au>Kwon, Oh‐Sung</au><au>Choi, Subin</au><au>Zhang, Jin</au><au>Hyun, Hyejeong</au><au>Oh, Juhyun</au><au>Kim, Juwon</au><au>Chung, Jinkyu</au><au>Kim, Hwiho</au><au>Wang, Jian</au><au>Bae, Junho</au><au>Moon, Junyeob</au><au>Park, Yoon‐Cheol</au><au>Hong, Moon‐Hi</au><au>Kim, Miyoung</au><au>Liu, Yijin</au><au>Sohn, Il</au><au>Jung, Keeyoung</au><au>Lim, Jongwoo</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><spage>e2207076</spage><epage>n/a</epage><pages>e2207076-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>During solid‐state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid‐state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state‐of‐the‐art Ni‐rich layered oxides (LiNi1‐x‐yCoxMnyO2, NRNCM) as cathode materials for lithium‐ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron‐based X‐ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature‐dependent reaction kinetics, the diffusivity of solid‐state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high‐energy/power density lithium‐ion batteries. High‐temperature calcination used for Li‐ion battery particle synthesis is chemically imaged. Various parallel and serial combinations of heterogeneous reactions, such as the thermal aerobic/anaerobic decomposition, Li2CO3 decomposition, Li2‐O insertion/diffusion, and O2 insertion/diffusion, prevail during the calcination reaction. The anaerobic decomposition of the precursor core slows down Li2‐O incorporation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36583605</pmid><doi>10.1002/adma.202207076</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2832-0343</orcidid><orcidid>https://orcid.org/0000-0003-1850-4701</orcidid><orcidid>https://orcid.org/0000-0002-2379-8911</orcidid><orcidid>https://orcid.org/0000-0003-4086-6477</orcidid><orcidid>https://orcid.org/0000-0001-6523-2548</orcidid><orcidid>https://orcid.org/0000-0002-8571-9182</orcidid><orcidid>https://orcid.org/0000-0002-3897-7488</orcidid><orcidid>https://orcid.org/0000-0002-8417-2488</orcidid><orcidid>https://orcid.org/0000-0002-6606-6833</orcidid><orcidid>https://orcid.org/0000-0001-8295-4331</orcidid><orcidid>https://orcid.org/0000-0003-3783-997X</orcidid><orcidid>https://orcid.org/0000-0002-3143-1079</orcidid><orcidid>https://orcid.org/0000-0001-7809-7912</orcidid><orcidid>https://orcid.org/0000-0002-3332-2335</orcidid><orcidid>https://orcid.org/0000000231431079</orcidid><orcidid>https://orcid.org/0000000233322335</orcidid><orcidid>https://orcid.org/000000033783997X</orcidid><orcidid>https://orcid.org/0000000223798911</orcidid><orcidid>https://orcid.org/0000000340866477</orcidid><orcidid>https://orcid.org/0000000318504701</orcidid><orcidid>https://orcid.org/0000000284172488</orcidid><orcidid>https://orcid.org/0000000285719182</orcidid><orcidid>https://orcid.org/0000000238977488</orcidid><orcidid>https://orcid.org/0000000165232548</orcidid><orcidid>https://orcid.org/0000000228320343</orcidid><orcidid>https://orcid.org/0000000266066833</orcidid><orcidid>https://orcid.org/0000000178097912</orcidid><orcidid>https://orcid.org/0000000182954331</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-03, Vol.35 (10), p.e2207076-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_2423931
source Wiley Online Library Journals Frontfile Complete
subjects Cathodes
Chemical composition
Chemical synthesis
Chemistry
Electrode materials
Heterogeneity
Lithium-ion batteries
Li‐ion batteries
Mass spectrometry
Mass transport
Materials Science
Nickel
nickel‐rich cathodes
Phase transitions
phase transitions with solid‐state reaction
Physics
Reaction intermediates
Reaction kinetics
Reaction mechanisms
Roasting
Science & Technology - Other Topics
spatial distribution of local chemical compositions within the particles
Synchrotrons
synthesis during calcination
Temperature dependence
Transition metals
title Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%E2%80%90State%20Reaction%20Heterogeneity%20During%20Calcination%20of%20Lithium%E2%80%90Ion%20Battery%20Cathode&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Jo,%20Sugeun&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States).%20Stanford%20Synchrotron%20Radiation%20Lightsource%20(SSRL)&rft.date=2023-03-01&rft.volume=35&rft.issue=10&rft.spage=e2207076&rft.epage=n/a&rft.pages=e2207076-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202207076&rft_dat=%3Cproquest_osti_%3E2759959637%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785215095&rft_id=info:pmid/36583605&rfr_iscdi=true