Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode
During solid‐state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid‐state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state‐of‐the‐art Ni‐rich layered oxides (LiNi1‐x‐yC...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-03, Vol.35 (10), p.e2207076-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | e2207076 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Jo, Sugeun Han, Jeongwoo Seo, Sungjae Kwon, Oh‐Sung Choi, Subin Zhang, Jin Hyun, Hyejeong Oh, Juhyun Kim, Juwon Chung, Jinkyu Kim, Hwiho Wang, Jian Bae, Junho Moon, Junyeob Park, Yoon‐Cheol Hong, Moon‐Hi Kim, Miyoung Liu, Yijin Sohn, Il Jung, Keeyoung Lim, Jongwoo |
description | During solid‐state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid‐state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state‐of‐the‐art Ni‐rich layered oxides (LiNi1‐x‐yCoxMnyO2, NRNCM) as cathode materials for lithium‐ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron‐based X‐ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature‐dependent reaction kinetics, the diffusivity of solid‐state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high‐energy/power density lithium‐ion batteries.
High‐temperature calcination used for Li‐ion battery particle synthesis is chemically imaged. Various parallel and serial combinations of heterogeneous reactions, such as the thermal aerobic/anaerobic decomposition, Li2CO3 decomposition, Li2‐O insertion/diffusion, and O2 insertion/diffusion, prevail during the calcination reaction. The anaerobic decomposition of the precursor core slows down Li2‐O incorporation. |
doi_str_mv | 10.1002/adma.202207076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2423931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759959637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4006-a9ff6c87a327855c5b030f7f98d273c4d47f32401417778e688e28de9a27a1b33</originalsourceid><addsrcrecordid>eNqF0c2KFDEUBeAgitOObl1KoRs31d4klb9l26POQIvgKLgL6dSt6QxVlbGSQnrnI_iMPolpexzBjatA-O4huYeQpxSWFIC9cu3glgwYAwVK3iMLKhitGzDiPlmA4aI2stEn5FFK1wBgJMiH5IRLobkEsSBfLmMf2p_ff1xml7H6iM7nEMfqHDNO8QpHDHlfnc1TGK-qtet9GN1vELtqE_IuzEMZvigXr10uI_uC8i62-Jg86Fyf8MnteUo-v33zaX1ebz68u1ivNrVvAGTtTNdJr5XjTGkhvNgCh051RrdMcd-0jeo4a4A2VCmlUWqNTLdoHFOObjk_Jc-PuTHlYJMPGf3Ox3FEny1rGDecFvTyiG6m-HXGlO0Qkse-dyPGOVmmhDHCSK4KffEPvY7zNJYv2MMLGRVlt0Utj8pPMaUJO3szhcFNe0vBHoqxh2LsXTFl4Nlt7LwdsL3jf5oowBzBt9Dj_j9xdnX2fvU3_Becx5nI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785215095</pqid></control><display><type>article</type><title>Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jo, Sugeun ; Han, Jeongwoo ; Seo, Sungjae ; Kwon, Oh‐Sung ; Choi, Subin ; Zhang, Jin ; Hyun, Hyejeong ; Oh, Juhyun ; Kim, Juwon ; Chung, Jinkyu ; Kim, Hwiho ; Wang, Jian ; Bae, Junho ; Moon, Junyeob ; Park, Yoon‐Cheol ; Hong, Moon‐Hi ; Kim, Miyoung ; Liu, Yijin ; Sohn, Il ; Jung, Keeyoung ; Lim, Jongwoo</creator><creatorcontrib>Jo, Sugeun ; Han, Jeongwoo ; Seo, Sungjae ; Kwon, Oh‐Sung ; Choi, Subin ; Zhang, Jin ; Hyun, Hyejeong ; Oh, Juhyun ; Kim, Juwon ; Chung, Jinkyu ; Kim, Hwiho ; Wang, Jian ; Bae, Junho ; Moon, Junyeob ; Park, Yoon‐Cheol ; Hong, Moon‐Hi ; Kim, Miyoung ; Liu, Yijin ; Sohn, Il ; Jung, Keeyoung ; Lim, Jongwoo ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><description>During solid‐state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid‐state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state‐of‐the‐art Ni‐rich layered oxides (LiNi1‐x‐yCoxMnyO2, NRNCM) as cathode materials for lithium‐ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron‐based X‐ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature‐dependent reaction kinetics, the diffusivity of solid‐state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high‐energy/power density lithium‐ion batteries.
High‐temperature calcination used for Li‐ion battery particle synthesis is chemically imaged. Various parallel and serial combinations of heterogeneous reactions, such as the thermal aerobic/anaerobic decomposition, Li2CO3 decomposition, Li2‐O insertion/diffusion, and O2 insertion/diffusion, prevail during the calcination reaction. The anaerobic decomposition of the precursor core slows down Li2‐O incorporation.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202207076</identifier><identifier>PMID: 36583605</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Chemical composition ; Chemical synthesis ; Chemistry ; Electrode materials ; Heterogeneity ; Lithium-ion batteries ; Li‐ion batteries ; Mass spectrometry ; Mass transport ; Materials Science ; Nickel ; nickel‐rich cathodes ; Phase transitions ; phase transitions with solid‐state reaction ; Physics ; Reaction intermediates ; Reaction kinetics ; Reaction mechanisms ; Roasting ; Science & Technology - Other Topics ; spatial distribution of local chemical compositions within the particles ; Synchrotrons ; synthesis during calcination ; Temperature dependence ; Transition metals</subject><ispartof>Advanced materials (Weinheim), 2023-03, Vol.35 (10), p.e2207076-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4006-a9ff6c87a327855c5b030f7f98d273c4d47f32401417778e688e28de9a27a1b33</citedby><cites>FETCH-LOGICAL-c4006-a9ff6c87a327855c5b030f7f98d273c4d47f32401417778e688e28de9a27a1b33</cites><orcidid>0000-0002-2832-0343 ; 0000-0003-1850-4701 ; 0000-0002-2379-8911 ; 0000-0003-4086-6477 ; 0000-0001-6523-2548 ; 0000-0002-8571-9182 ; 0000-0002-3897-7488 ; 0000-0002-8417-2488 ; 0000-0002-6606-6833 ; 0000-0001-8295-4331 ; 0000-0003-3783-997X ; 0000-0002-3143-1079 ; 0000-0001-7809-7912 ; 0000-0002-3332-2335 ; 0000000231431079 ; 0000000233322335 ; 000000033783997X ; 0000000223798911 ; 0000000340866477 ; 0000000318504701 ; 0000000284172488 ; 0000000285719182 ; 0000000238977488 ; 0000000165232548 ; 0000000228320343 ; 0000000266066833 ; 0000000178097912 ; 0000000182954331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202207076$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202207076$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36583605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2423931$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Sugeun</creatorcontrib><creatorcontrib>Han, Jeongwoo</creatorcontrib><creatorcontrib>Seo, Sungjae</creatorcontrib><creatorcontrib>Kwon, Oh‐Sung</creatorcontrib><creatorcontrib>Choi, Subin</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Hyun, Hyejeong</creatorcontrib><creatorcontrib>Oh, Juhyun</creatorcontrib><creatorcontrib>Kim, Juwon</creatorcontrib><creatorcontrib>Chung, Jinkyu</creatorcontrib><creatorcontrib>Kim, Hwiho</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Bae, Junho</creatorcontrib><creatorcontrib>Moon, Junyeob</creatorcontrib><creatorcontrib>Park, Yoon‐Cheol</creatorcontrib><creatorcontrib>Hong, Moon‐Hi</creatorcontrib><creatorcontrib>Kim, Miyoung</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Sohn, Il</creatorcontrib><creatorcontrib>Jung, Keeyoung</creatorcontrib><creatorcontrib>Lim, Jongwoo</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><title>Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>During solid‐state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid‐state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state‐of‐the‐art Ni‐rich layered oxides (LiNi1‐x‐yCoxMnyO2, NRNCM) as cathode materials for lithium‐ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron‐based X‐ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature‐dependent reaction kinetics, the diffusivity of solid‐state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high‐energy/power density lithium‐ion batteries.
High‐temperature calcination used for Li‐ion battery particle synthesis is chemically imaged. Various parallel and serial combinations of heterogeneous reactions, such as the thermal aerobic/anaerobic decomposition, Li2CO3 decomposition, Li2‐O insertion/diffusion, and O2 insertion/diffusion, prevail during the calcination reaction. The anaerobic decomposition of the precursor core slows down Li2‐O incorporation.</description><subject>Cathodes</subject><subject>Chemical composition</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Electrode materials</subject><subject>Heterogeneity</subject><subject>Lithium-ion batteries</subject><subject>Li‐ion batteries</subject><subject>Mass spectrometry</subject><subject>Mass transport</subject><subject>Materials Science</subject><subject>Nickel</subject><subject>nickel‐rich cathodes</subject><subject>Phase transitions</subject><subject>phase transitions with solid‐state reaction</subject><subject>Physics</subject><subject>Reaction intermediates</subject><subject>Reaction kinetics</subject><subject>Reaction mechanisms</subject><subject>Roasting</subject><subject>Science & Technology - Other Topics</subject><subject>spatial distribution of local chemical compositions within the particles</subject><subject>Synchrotrons</subject><subject>synthesis during calcination</subject><subject>Temperature dependence</subject><subject>Transition metals</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0c2KFDEUBeAgitOObl1KoRs31d4klb9l26POQIvgKLgL6dSt6QxVlbGSQnrnI_iMPolpexzBjatA-O4huYeQpxSWFIC9cu3glgwYAwVK3iMLKhitGzDiPlmA4aI2stEn5FFK1wBgJMiH5IRLobkEsSBfLmMf2p_ff1xml7H6iM7nEMfqHDNO8QpHDHlfnc1TGK-qtet9GN1vELtqE_IuzEMZvigXr10uI_uC8i62-Jg86Fyf8MnteUo-v33zaX1ebz68u1ivNrVvAGTtTNdJr5XjTGkhvNgCh051RrdMcd-0jeo4a4A2VCmlUWqNTLdoHFOObjk_Jc-PuTHlYJMPGf3Ox3FEny1rGDecFvTyiG6m-HXGlO0Qkse-dyPGOVmmhDHCSK4KffEPvY7zNJYv2MMLGRVlt0Utj8pPMaUJO3szhcFNe0vBHoqxh2LsXTFl4Nlt7LwdsL3jf5oowBzBt9Dj_j9xdnX2fvU3_Becx5nI</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Jo, Sugeun</creator><creator>Han, Jeongwoo</creator><creator>Seo, Sungjae</creator><creator>Kwon, Oh‐Sung</creator><creator>Choi, Subin</creator><creator>Zhang, Jin</creator><creator>Hyun, Hyejeong</creator><creator>Oh, Juhyun</creator><creator>Kim, Juwon</creator><creator>Chung, Jinkyu</creator><creator>Kim, Hwiho</creator><creator>Wang, Jian</creator><creator>Bae, Junho</creator><creator>Moon, Junyeob</creator><creator>Park, Yoon‐Cheol</creator><creator>Hong, Moon‐Hi</creator><creator>Kim, Miyoung</creator><creator>Liu, Yijin</creator><creator>Sohn, Il</creator><creator>Jung, Keeyoung</creator><creator>Lim, Jongwoo</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2832-0343</orcidid><orcidid>https://orcid.org/0000-0003-1850-4701</orcidid><orcidid>https://orcid.org/0000-0002-2379-8911</orcidid><orcidid>https://orcid.org/0000-0003-4086-6477</orcidid><orcidid>https://orcid.org/0000-0001-6523-2548</orcidid><orcidid>https://orcid.org/0000-0002-8571-9182</orcidid><orcidid>https://orcid.org/0000-0002-3897-7488</orcidid><orcidid>https://orcid.org/0000-0002-8417-2488</orcidid><orcidid>https://orcid.org/0000-0002-6606-6833</orcidid><orcidid>https://orcid.org/0000-0001-8295-4331</orcidid><orcidid>https://orcid.org/0000-0003-3783-997X</orcidid><orcidid>https://orcid.org/0000-0002-3143-1079</orcidid><orcidid>https://orcid.org/0000-0001-7809-7912</orcidid><orcidid>https://orcid.org/0000-0002-3332-2335</orcidid><orcidid>https://orcid.org/0000000231431079</orcidid><orcidid>https://orcid.org/0000000233322335</orcidid><orcidid>https://orcid.org/000000033783997X</orcidid><orcidid>https://orcid.org/0000000223798911</orcidid><orcidid>https://orcid.org/0000000340866477</orcidid><orcidid>https://orcid.org/0000000318504701</orcidid><orcidid>https://orcid.org/0000000284172488</orcidid><orcidid>https://orcid.org/0000000285719182</orcidid><orcidid>https://orcid.org/0000000238977488</orcidid><orcidid>https://orcid.org/0000000165232548</orcidid><orcidid>https://orcid.org/0000000228320343</orcidid><orcidid>https://orcid.org/0000000266066833</orcidid><orcidid>https://orcid.org/0000000178097912</orcidid><orcidid>https://orcid.org/0000000182954331</orcidid></search><sort><creationdate>20230301</creationdate><title>Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode</title><author>Jo, Sugeun ; Han, Jeongwoo ; Seo, Sungjae ; Kwon, Oh‐Sung ; Choi, Subin ; Zhang, Jin ; Hyun, Hyejeong ; Oh, Juhyun ; Kim, Juwon ; Chung, Jinkyu ; Kim, Hwiho ; Wang, Jian ; Bae, Junho ; Moon, Junyeob ; Park, Yoon‐Cheol ; Hong, Moon‐Hi ; Kim, Miyoung ; Liu, Yijin ; Sohn, Il ; Jung, Keeyoung ; Lim, Jongwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4006-a9ff6c87a327855c5b030f7f98d273c4d47f32401417778e688e28de9a27a1b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>Chemical composition</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Electrode materials</topic><topic>Heterogeneity</topic><topic>Lithium-ion batteries</topic><topic>Li‐ion batteries</topic><topic>Mass spectrometry</topic><topic>Mass transport</topic><topic>Materials Science</topic><topic>Nickel</topic><topic>nickel‐rich cathodes</topic><topic>Phase transitions</topic><topic>phase transitions with solid‐state reaction</topic><topic>Physics</topic><topic>Reaction intermediates</topic><topic>Reaction kinetics</topic><topic>Reaction mechanisms</topic><topic>Roasting</topic><topic>Science & Technology - Other Topics</topic><topic>spatial distribution of local chemical compositions within the particles</topic><topic>Synchrotrons</topic><topic>synthesis during calcination</topic><topic>Temperature dependence</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Sugeun</creatorcontrib><creatorcontrib>Han, Jeongwoo</creatorcontrib><creatorcontrib>Seo, Sungjae</creatorcontrib><creatorcontrib>Kwon, Oh‐Sung</creatorcontrib><creatorcontrib>Choi, Subin</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Hyun, Hyejeong</creatorcontrib><creatorcontrib>Oh, Juhyun</creatorcontrib><creatorcontrib>Kim, Juwon</creatorcontrib><creatorcontrib>Chung, Jinkyu</creatorcontrib><creatorcontrib>Kim, Hwiho</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Bae, Junho</creatorcontrib><creatorcontrib>Moon, Junyeob</creatorcontrib><creatorcontrib>Park, Yoon‐Cheol</creatorcontrib><creatorcontrib>Hong, Moon‐Hi</creatorcontrib><creatorcontrib>Kim, Miyoung</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Sohn, Il</creatorcontrib><creatorcontrib>Jung, Keeyoung</creatorcontrib><creatorcontrib>Lim, Jongwoo</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Sugeun</au><au>Han, Jeongwoo</au><au>Seo, Sungjae</au><au>Kwon, Oh‐Sung</au><au>Choi, Subin</au><au>Zhang, Jin</au><au>Hyun, Hyejeong</au><au>Oh, Juhyun</au><au>Kim, Juwon</au><au>Chung, Jinkyu</au><au>Kim, Hwiho</au><au>Wang, Jian</au><au>Bae, Junho</au><au>Moon, Junyeob</au><au>Park, Yoon‐Cheol</au><au>Hong, Moon‐Hi</au><au>Kim, Miyoung</au><au>Liu, Yijin</au><au>Sohn, Il</au><au>Jung, Keeyoung</au><au>Lim, Jongwoo</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><spage>e2207076</spage><epage>n/a</epage><pages>e2207076-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>During solid‐state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid‐state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state‐of‐the‐art Ni‐rich layered oxides (LiNi1‐x‐yCoxMnyO2, NRNCM) as cathode materials for lithium‐ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron‐based X‐ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature‐dependent reaction kinetics, the diffusivity of solid‐state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high‐energy/power density lithium‐ion batteries.
High‐temperature calcination used for Li‐ion battery particle synthesis is chemically imaged. Various parallel and serial combinations of heterogeneous reactions, such as the thermal aerobic/anaerobic decomposition, Li2CO3 decomposition, Li2‐O insertion/diffusion, and O2 insertion/diffusion, prevail during the calcination reaction. The anaerobic decomposition of the precursor core slows down Li2‐O incorporation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36583605</pmid><doi>10.1002/adma.202207076</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2832-0343</orcidid><orcidid>https://orcid.org/0000-0003-1850-4701</orcidid><orcidid>https://orcid.org/0000-0002-2379-8911</orcidid><orcidid>https://orcid.org/0000-0003-4086-6477</orcidid><orcidid>https://orcid.org/0000-0001-6523-2548</orcidid><orcidid>https://orcid.org/0000-0002-8571-9182</orcidid><orcidid>https://orcid.org/0000-0002-3897-7488</orcidid><orcidid>https://orcid.org/0000-0002-8417-2488</orcidid><orcidid>https://orcid.org/0000-0002-6606-6833</orcidid><orcidid>https://orcid.org/0000-0001-8295-4331</orcidid><orcidid>https://orcid.org/0000-0003-3783-997X</orcidid><orcidid>https://orcid.org/0000-0002-3143-1079</orcidid><orcidid>https://orcid.org/0000-0001-7809-7912</orcidid><orcidid>https://orcid.org/0000-0002-3332-2335</orcidid><orcidid>https://orcid.org/0000000231431079</orcidid><orcidid>https://orcid.org/0000000233322335</orcidid><orcidid>https://orcid.org/000000033783997X</orcidid><orcidid>https://orcid.org/0000000223798911</orcidid><orcidid>https://orcid.org/0000000340866477</orcidid><orcidid>https://orcid.org/0000000318504701</orcidid><orcidid>https://orcid.org/0000000284172488</orcidid><orcidid>https://orcid.org/0000000285719182</orcidid><orcidid>https://orcid.org/0000000238977488</orcidid><orcidid>https://orcid.org/0000000165232548</orcidid><orcidid>https://orcid.org/0000000228320343</orcidid><orcidid>https://orcid.org/0000000266066833</orcidid><orcidid>https://orcid.org/0000000178097912</orcidid><orcidid>https://orcid.org/0000000182954331</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-03, Vol.35 (10), p.e2207076-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_2423931 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cathodes Chemical composition Chemical synthesis Chemistry Electrode materials Heterogeneity Lithium-ion batteries Li‐ion batteries Mass spectrometry Mass transport Materials Science Nickel nickel‐rich cathodes Phase transitions phase transitions with solid‐state reaction Physics Reaction intermediates Reaction kinetics Reaction mechanisms Roasting Science & Technology - Other Topics spatial distribution of local chemical compositions within the particles Synchrotrons synthesis during calcination Temperature dependence Transition metals |
title | Solid‐State Reaction Heterogeneity During Calcination of Lithium‐Ion Battery Cathode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%E2%80%90State%20Reaction%20Heterogeneity%20During%20Calcination%20of%20Lithium%E2%80%90Ion%20Battery%20Cathode&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Jo,%20Sugeun&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States).%20Stanford%20Synchrotron%20Radiation%20Lightsource%20(SSRL)&rft.date=2023-03-01&rft.volume=35&rft.issue=10&rft.spage=e2207076&rft.epage=n/a&rft.pages=e2207076-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202207076&rft_dat=%3Cproquest_osti_%3E2759959637%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785215095&rft_id=info:pmid/36583605&rfr_iscdi=true |