Tuning Crystallinity and Stacking of Two-Dimensional Covalent Organic Frameworks through Side-Chain Interactions

Two-dimensional covalent organic frameworks (2D COFs) form as layered 2D polymers whose sheets stack through high-surface-area, noncovalent interactions that can give rise to different interlayer arrangements. Manipulating the stacking of 2D COFs is crucial since it dictates the effective size and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-10, Vol.145 (40), p.21798-21806
Hauptverfasser: Pelkowski, Chloe E., Natraj, Anusree, Malliakas, Christos D., Burke, David W., Bardot, Madison I., Wang, Zixiao, Li, Haoyuan, Dichtel, William R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21806
container_issue 40
container_start_page 21798
container_title Journal of the American Chemical Society
container_volume 145
creator Pelkowski, Chloe E.
Natraj, Anusree
Malliakas, Christos D.
Burke, David W.
Bardot, Madison I.
Wang, Zixiao
Li, Haoyuan
Dichtel, William R.
description Two-dimensional covalent organic frameworks (2D COFs) form as layered 2D polymers whose sheets stack through high-surface-area, noncovalent interactions that can give rise to different interlayer arrangements. Manipulating the stacking of 2D COFs is crucial since it dictates the effective size and shape of the pores as well as the specific interactions between functional aromatic systems in adjacent layers, both of which will strongly influence the emergent properties of 2D COFs. However, principles for tuning layer stacking are not yet well understood, and many 2D COFs are disordered in the stacking direction. Here, we investigate effects of pendant chain length through a series of 2D imine-linked COFs functionalized with n-alkyloxy chains varying in length from one carbon (C 1 COF) to 11 carbons (C 11 COF). This series reveals previously unrecognized and unanticipated trends in both the stacking geometry and crystallinity. C 1 COF adopts an averaged eclipsed geometry with no apparent offset between layers. In contrast, all subsequent chain lengths lead to some degree of unidirectional slip stacking. As pendant chain length is increased, trends show average layer offset increasing to a maximum of 2.07 Å in C 5 COF and then decreasing as chain length is extended through C 11 COF. Counterintuitively, shorter chains (C 2 –C 4 ) give rise to lower yields of weakly crystalline materials, while longer chains (C 6 –C 9 ) produce greater yields of highly crystalline materials, as confirmed by powder X-ray diffraction and scanning electron microscopy. Molecular dynamics simulations corroborate these observations, suggesting that long alkyl chains can interact favorably to promote the self-assembly of sheets. In situ proton NMR spectroscopy provides insights into the reaction equilibrium as well as the relationship between low COF yields and low crystallinity. These results provide fundamental insights into principles of supramolecular assembly in 2D COFs, demonstrating an opportunity for harnessing favorable side-chain interactions to produce highly crystalline materials.
doi_str_mv 10.1021/jacs.3c03868
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2423717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153641972</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-7fbb1b026627dd55b359d40ed76bc519ec79a254f5574126014dca78fa7bb2493</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EEuWx4wMsViwI-BHHyRKFp4TURcvamjhO65LaxXZA_XtSFYkNEqvRzJy50p2L0AUlN5QwersCHW-4JrwsygM0oYKRTFBWHKIJIYRlsiz4MTqJcTW2OSvpBG3mg7NugeuwjQn63jqbthhci2cJ9Ptu5Ts8__LZvV0bF6130OPaf0JvXMLTsABnNX4MsDZfPrxHnJbBD4slntnWZPUSrMMvLpkAOo3H8QwdddBHc_5TT9Hb48O8fs5ep08v9d1rBrygKZNd09CGsKJgsm2FaLio2pyYVhaNFrQyWlbARN4JIfPRIqF5q0GWHcimYXnFT9HlXtfHZFXUNhm91N45o5NiOeOSyhG62kOb4D8GE5Na26hN34MzfoiKU8GLnFaS_YuyUpKqEozSEb3eozr4GIPp1CbYNYStokTtglK7oNRPUL_Ku-HKD2H8cPwb_QZg9pQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870995211</pqid></control><display><type>article</type><title>Tuning Crystallinity and Stacking of Two-Dimensional Covalent Organic Frameworks through Side-Chain Interactions</title><source>ACS Publications</source><creator>Pelkowski, Chloe E. ; Natraj, Anusree ; Malliakas, Christos D. ; Burke, David W. ; Bardot, Madison I. ; Wang, Zixiao ; Li, Haoyuan ; Dichtel, William R.</creator><creatorcontrib>Pelkowski, Chloe E. ; Natraj, Anusree ; Malliakas, Christos D. ; Burke, David W. ; Bardot, Madison I. ; Wang, Zixiao ; Li, Haoyuan ; Dichtel, William R. ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Two-dimensional covalent organic frameworks (2D COFs) form as layered 2D polymers whose sheets stack through high-surface-area, noncovalent interactions that can give rise to different interlayer arrangements. Manipulating the stacking of 2D COFs is crucial since it dictates the effective size and shape of the pores as well as the specific interactions between functional aromatic systems in adjacent layers, both of which will strongly influence the emergent properties of 2D COFs. However, principles for tuning layer stacking are not yet well understood, and many 2D COFs are disordered in the stacking direction. Here, we investigate effects of pendant chain length through a series of 2D imine-linked COFs functionalized with n-alkyloxy chains varying in length from one carbon (C 1 COF) to 11 carbons (C 11 COF). This series reveals previously unrecognized and unanticipated trends in both the stacking geometry and crystallinity. C 1 COF adopts an averaged eclipsed geometry with no apparent offset between layers. In contrast, all subsequent chain lengths lead to some degree of unidirectional slip stacking. As pendant chain length is increased, trends show average layer offset increasing to a maximum of 2.07 Å in C 5 COF and then decreasing as chain length is extended through C 11 COF. Counterintuitively, shorter chains (C 2 –C 4 ) give rise to lower yields of weakly crystalline materials, while longer chains (C 6 –C 9 ) produce greater yields of highly crystalline materials, as confirmed by powder X-ray diffraction and scanning electron microscopy. Molecular dynamics simulations corroborate these observations, suggesting that long alkyl chains can interact favorably to promote the self-assembly of sheets. In situ proton NMR spectroscopy provides insights into the reaction equilibrium as well as the relationship between low COF yields and low crystallinity. These results provide fundamental insights into principles of supramolecular assembly in 2D COFs, demonstrating an opportunity for harnessing favorable side-chain interactions to produce highly crystalline materials.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c03868</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>carbon ; Chemistry ; crystal structure ; electron microscopy ; geometry ; molecular dynamics ; nuclear magnetic resonance spectroscopy ; X-ray diffraction</subject><ispartof>Journal of the American Chemical Society, 2023-10, Vol.145 (40), p.21798-21806</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-7fbb1b026627dd55b359d40ed76bc519ec79a254f5574126014dca78fa7bb2493</citedby><cites>FETCH-LOGICAL-a361t-7fbb1b026627dd55b359d40ed76bc519ec79a254f5574126014dca78fa7bb2493</cites><orcidid>0000-0001-8655-6947 ; 0000-0002-3635-6119 ; 0000-0002-2469-5842 ; 0000-0003-4416-638X ; 0000-0003-4171-9815 ; 0000000224695842 ; 000000034416638X ; 0000000341719815 ; 0000000236356119 ; 0000000186556947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c03868$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c03868$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2423717$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pelkowski, Chloe E.</creatorcontrib><creatorcontrib>Natraj, Anusree</creatorcontrib><creatorcontrib>Malliakas, Christos D.</creatorcontrib><creatorcontrib>Burke, David W.</creatorcontrib><creatorcontrib>Bardot, Madison I.</creatorcontrib><creatorcontrib>Wang, Zixiao</creatorcontrib><creatorcontrib>Li, Haoyuan</creatorcontrib><creatorcontrib>Dichtel, William R.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Tuning Crystallinity and Stacking of Two-Dimensional Covalent Organic Frameworks through Side-Chain Interactions</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Two-dimensional covalent organic frameworks (2D COFs) form as layered 2D polymers whose sheets stack through high-surface-area, noncovalent interactions that can give rise to different interlayer arrangements. Manipulating the stacking of 2D COFs is crucial since it dictates the effective size and shape of the pores as well as the specific interactions between functional aromatic systems in adjacent layers, both of which will strongly influence the emergent properties of 2D COFs. However, principles for tuning layer stacking are not yet well understood, and many 2D COFs are disordered in the stacking direction. Here, we investigate effects of pendant chain length through a series of 2D imine-linked COFs functionalized with n-alkyloxy chains varying in length from one carbon (C 1 COF) to 11 carbons (C 11 COF). This series reveals previously unrecognized and unanticipated trends in both the stacking geometry and crystallinity. C 1 COF adopts an averaged eclipsed geometry with no apparent offset between layers. In contrast, all subsequent chain lengths lead to some degree of unidirectional slip stacking. As pendant chain length is increased, trends show average layer offset increasing to a maximum of 2.07 Å in C 5 COF and then decreasing as chain length is extended through C 11 COF. Counterintuitively, shorter chains (C 2 –C 4 ) give rise to lower yields of weakly crystalline materials, while longer chains (C 6 –C 9 ) produce greater yields of highly crystalline materials, as confirmed by powder X-ray diffraction and scanning electron microscopy. Molecular dynamics simulations corroborate these observations, suggesting that long alkyl chains can interact favorably to promote the self-assembly of sheets. In situ proton NMR spectroscopy provides insights into the reaction equilibrium as well as the relationship between low COF yields and low crystallinity. These results provide fundamental insights into principles of supramolecular assembly in 2D COFs, demonstrating an opportunity for harnessing favorable side-chain interactions to produce highly crystalline materials.</description><subject>carbon</subject><subject>Chemistry</subject><subject>crystal structure</subject><subject>electron microscopy</subject><subject>geometry</subject><subject>molecular dynamics</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>X-ray diffraction</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRS0EEuWx4wMsViwI-BHHyRKFp4TURcvamjhO65LaxXZA_XtSFYkNEqvRzJy50p2L0AUlN5QwersCHW-4JrwsygM0oYKRTFBWHKIJIYRlsiz4MTqJcTW2OSvpBG3mg7NugeuwjQn63jqbthhci2cJ9Ptu5Ts8__LZvV0bF6130OPaf0JvXMLTsABnNX4MsDZfPrxHnJbBD4slntnWZPUSrMMvLpkAOo3H8QwdddBHc_5TT9Hb48O8fs5ep08v9d1rBrygKZNd09CGsKJgsm2FaLio2pyYVhaNFrQyWlbARN4JIfPRIqF5q0GWHcimYXnFT9HlXtfHZFXUNhm91N45o5NiOeOSyhG62kOb4D8GE5Na26hN34MzfoiKU8GLnFaS_YuyUpKqEozSEb3eozr4GIPp1CbYNYStokTtglK7oNRPUL_Ku-HKD2H8cPwb_QZg9pQg</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Pelkowski, Chloe E.</creator><creator>Natraj, Anusree</creator><creator>Malliakas, Christos D.</creator><creator>Burke, David W.</creator><creator>Bardot, Madison I.</creator><creator>Wang, Zixiao</creator><creator>Li, Haoyuan</creator><creator>Dichtel, William R.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8655-6947</orcidid><orcidid>https://orcid.org/0000-0002-3635-6119</orcidid><orcidid>https://orcid.org/0000-0002-2469-5842</orcidid><orcidid>https://orcid.org/0000-0003-4416-638X</orcidid><orcidid>https://orcid.org/0000-0003-4171-9815</orcidid><orcidid>https://orcid.org/0000000224695842</orcidid><orcidid>https://orcid.org/000000034416638X</orcidid><orcidid>https://orcid.org/0000000341719815</orcidid><orcidid>https://orcid.org/0000000236356119</orcidid><orcidid>https://orcid.org/0000000186556947</orcidid></search><sort><creationdate>20231011</creationdate><title>Tuning Crystallinity and Stacking of Two-Dimensional Covalent Organic Frameworks through Side-Chain Interactions</title><author>Pelkowski, Chloe E. ; Natraj, Anusree ; Malliakas, Christos D. ; Burke, David W. ; Bardot, Madison I. ; Wang, Zixiao ; Li, Haoyuan ; Dichtel, William R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-7fbb1b026627dd55b359d40ed76bc519ec79a254f5574126014dca78fa7bb2493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon</topic><topic>Chemistry</topic><topic>crystal structure</topic><topic>electron microscopy</topic><topic>geometry</topic><topic>molecular dynamics</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelkowski, Chloe E.</creatorcontrib><creatorcontrib>Natraj, Anusree</creatorcontrib><creatorcontrib>Malliakas, Christos D.</creatorcontrib><creatorcontrib>Burke, David W.</creatorcontrib><creatorcontrib>Bardot, Madison I.</creatorcontrib><creatorcontrib>Wang, Zixiao</creatorcontrib><creatorcontrib>Li, Haoyuan</creatorcontrib><creatorcontrib>Dichtel, William R.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelkowski, Chloe E.</au><au>Natraj, Anusree</au><au>Malliakas, Christos D.</au><au>Burke, David W.</au><au>Bardot, Madison I.</au><au>Wang, Zixiao</au><au>Li, Haoyuan</au><au>Dichtel, William R.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning Crystallinity and Stacking of Two-Dimensional Covalent Organic Frameworks through Side-Chain Interactions</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-10-11</date><risdate>2023</risdate><volume>145</volume><issue>40</issue><spage>21798</spage><epage>21806</epage><pages>21798-21806</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Two-dimensional covalent organic frameworks (2D COFs) form as layered 2D polymers whose sheets stack through high-surface-area, noncovalent interactions that can give rise to different interlayer arrangements. Manipulating the stacking of 2D COFs is crucial since it dictates the effective size and shape of the pores as well as the specific interactions between functional aromatic systems in adjacent layers, both of which will strongly influence the emergent properties of 2D COFs. However, principles for tuning layer stacking are not yet well understood, and many 2D COFs are disordered in the stacking direction. Here, we investigate effects of pendant chain length through a series of 2D imine-linked COFs functionalized with n-alkyloxy chains varying in length from one carbon (C 1 COF) to 11 carbons (C 11 COF). This series reveals previously unrecognized and unanticipated trends in both the stacking geometry and crystallinity. C 1 COF adopts an averaged eclipsed geometry with no apparent offset between layers. In contrast, all subsequent chain lengths lead to some degree of unidirectional slip stacking. As pendant chain length is increased, trends show average layer offset increasing to a maximum of 2.07 Å in C 5 COF and then decreasing as chain length is extended through C 11 COF. Counterintuitively, shorter chains (C 2 –C 4 ) give rise to lower yields of weakly crystalline materials, while longer chains (C 6 –C 9 ) produce greater yields of highly crystalline materials, as confirmed by powder X-ray diffraction and scanning electron microscopy. Molecular dynamics simulations corroborate these observations, suggesting that long alkyl chains can interact favorably to promote the self-assembly of sheets. In situ proton NMR spectroscopy provides insights into the reaction equilibrium as well as the relationship between low COF yields and low crystallinity. These results provide fundamental insights into principles of supramolecular assembly in 2D COFs, demonstrating an opportunity for harnessing favorable side-chain interactions to produce highly crystalline materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jacs.3c03868</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8655-6947</orcidid><orcidid>https://orcid.org/0000-0002-3635-6119</orcidid><orcidid>https://orcid.org/0000-0002-2469-5842</orcidid><orcidid>https://orcid.org/0000-0003-4416-638X</orcidid><orcidid>https://orcid.org/0000-0003-4171-9815</orcidid><orcidid>https://orcid.org/0000000224695842</orcidid><orcidid>https://orcid.org/000000034416638X</orcidid><orcidid>https://orcid.org/0000000341719815</orcidid><orcidid>https://orcid.org/0000000236356119</orcidid><orcidid>https://orcid.org/0000000186556947</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-10, Vol.145 (40), p.21798-21806
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_osti_scitechconnect_2423717
source ACS Publications
subjects carbon
Chemistry
crystal structure
electron microscopy
geometry
molecular dynamics
nuclear magnetic resonance spectroscopy
X-ray diffraction
title Tuning Crystallinity and Stacking of Two-Dimensional Covalent Organic Frameworks through Side-Chain Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20Crystallinity%20and%20Stacking%20of%20Two-Dimensional%20Covalent%20Organic%20Frameworks%20through%20Side-Chain%20Interactions&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Pelkowski,%20Chloe%20E.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2023-10-11&rft.volume=145&rft.issue=40&rft.spage=21798&rft.epage=21806&rft.pages=21798-21806&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c03868&rft_dat=%3Cproquest_osti_%3E3153641972%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870995211&rft_id=info:pmid/&rfr_iscdi=true