Highly Nonstoichiometric YAG Ceramics with Modified Luminescence Properties

Y3Al5O12 (YAG) is a widely used phosphor host. Its optical properties are controlled by chemical substitution at its YO8 or AlO6/AlO4 sublattices, with emission wavelengths defined by rare‐earth and transition‐metal dopants that have been explored extensively. Nonstoichiometric compositions Y3+xAl5‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-04, Vol.33 (14), p.n/a
Hauptverfasser: Cao, Weiwei, Becerro, Ana Isabel, Castaing, Victor, Fang, Xue, Florian, Pierre, Fayon, Franck, Zanghi, Didier, Veron, Emmanuel, Zandonà, Alessio, Genevois, Cécile, Pitcher, Michael J., Allix, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page
container_title Advanced functional materials
container_volume 33
creator Cao, Weiwei
Becerro, Ana Isabel
Castaing, Victor
Fang, Xue
Florian, Pierre
Fayon, Franck
Zanghi, Didier
Veron, Emmanuel
Zandonà, Alessio
Genevois, Cécile
Pitcher, Michael J.
Allix, Mathieu
description Y3Al5O12 (YAG) is a widely used phosphor host. Its optical properties are controlled by chemical substitution at its YO8 or AlO6/AlO4 sublattices, with emission wavelengths defined by rare‐earth and transition‐metal dopants that have been explored extensively. Nonstoichiometric compositions Y3+xAl5‐xO12 (x ≠ 0) may offer a route to new emission wavelengths by distributing dopants over two or more sublattices simultaneously, producing new local coordination environments for the activator ions. However, YAG typically behaves as a line phase, and such compositions are therefore challenging to synthesize. Here, a series of highly nonstoichiometric Y3+xAl5‐xO12 with 0 ≤ x ≤ 0.40 is reported, corresponding to ≤20% of the AlO6 sublattice substituted by Y3+, synthesized by advanced melt‐quenching techniques. This impacts the up‐conversion luminescence of Yb3+/Er3+‐doped systems, whose yellow‐green emission differs from the red‐orange emission of their stoichiometric counterparts. In contrast, the YAG:Ce3+ system has a different structural response to nonstoichiometry and its down‐conversion emission is only weakly affected. Analogous highly nonstoichiometric systems should be obtainable for a range of garnet materials, demonstrated here by the synthesis of Gd3.2Al4.8O12 and Gd3.2Ga4.8O12. This opens pathways to property tuning by control of host stoichiometry, and the prospect of improved performance or new applications for garnet‐type materials. A family of highly nonstoichiometric Y3Al5O12 (YAG) ceramics is isolated by advanced melt‐quenching methods. In these materials, rare‐earth dopants can populate two crystallographic sublattices, providing a mechanism for luminescence color tuning that is not available to conventional stoichiometric YAGs. The concept is generalized to other garnet ceramics including GAG and GGG, opening new avenues for exploration in this important materials class.
doi_str_mv 10.1002/adfm.202213418
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2423453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794569479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3848-d571eb9d18295d88ac883f5e0a3d65ede7b3096b437fd57c71847d230c26b1b83</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQCMEEqWwMkcwp_grsTNWhbaIFhhAgslK7Atx1cTFdlX135MqqIxMd8N7p9OLomuMRhghclfoqhkRRAimDIuTaIAznCUUEXF63PHHeXTh_QohzDllg-hpbr7q9T5-tq0P1qja2AaCMyr-HM_iCbiiMcrHOxPqeGm1qQzoeLFtTAteQasgfnV2Ay4Y8JfRWVWsPVz9zmH0Pn14m8yTxcvscTJeJIoKJhKdcgxlrrEgeaqFKJQQtEoBFVRnKWjgJUV5VjLKq45VHAvGNaFIkazEpaDD6Ka_a30w0isTQNXKti2oIAkjlKW0g257aOPs9xZ8kCu7dW33lyQ8Z2mWM5531KinlLPeO6jkxpmmcHuJkTxUlYeq8li1E_Je2Jk17P-h5fh-uvxzfwBVO3q4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794569479</pqid></control><display><type>article</type><title>Highly Nonstoichiometric YAG Ceramics with Modified Luminescence Properties</title><source>Wiley Online Library</source><creator>Cao, Weiwei ; Becerro, Ana Isabel ; Castaing, Victor ; Fang, Xue ; Florian, Pierre ; Fayon, Franck ; Zanghi, Didier ; Veron, Emmanuel ; Zandonà, Alessio ; Genevois, Cécile ; Pitcher, Michael J. ; Allix, Mathieu</creator><creatorcontrib>Cao, Weiwei ; Becerro, Ana Isabel ; Castaing, Victor ; Fang, Xue ; Florian, Pierre ; Fayon, Franck ; Zanghi, Didier ; Veron, Emmanuel ; Zandonà, Alessio ; Genevois, Cécile ; Pitcher, Michael J. ; Allix, Mathieu ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Y3Al5O12 (YAG) is a widely used phosphor host. Its optical properties are controlled by chemical substitution at its YO8 or AlO6/AlO4 sublattices, with emission wavelengths defined by rare‐earth and transition‐metal dopants that have been explored extensively. Nonstoichiometric compositions Y3+xAl5‐xO12 (x ≠ 0) may offer a route to new emission wavelengths by distributing dopants over two or more sublattices simultaneously, producing new local coordination environments for the activator ions. However, YAG typically behaves as a line phase, and such compositions are therefore challenging to synthesize. Here, a series of highly nonstoichiometric Y3+xAl5‐xO12 with 0 ≤ x ≤ 0.40 is reported, corresponding to ≤20% of the AlO6 sublattice substituted by Y3+, synthesized by advanced melt‐quenching techniques. This impacts the up‐conversion luminescence of Yb3+/Er3+‐doped systems, whose yellow‐green emission differs from the red‐orange emission of their stoichiometric counterparts. In contrast, the YAG:Ce3+ system has a different structural response to nonstoichiometry and its down‐conversion emission is only weakly affected. Analogous highly nonstoichiometric systems should be obtainable for a range of garnet materials, demonstrated here by the synthesis of Gd3.2Al4.8O12 and Gd3.2Ga4.8O12. This opens pathways to property tuning by control of host stoichiometry, and the prospect of improved performance or new applications for garnet‐type materials. A family of highly nonstoichiometric Y3Al5O12 (YAG) ceramics is isolated by advanced melt‐quenching methods. In these materials, rare‐earth dopants can populate two crystallographic sublattices, providing a mechanism for luminescence color tuning that is not available to conventional stoichiometric YAGs. The concept is generalized to other garnet ceramics including GAG and GGG, opening new avenues for exploration in this important materials class.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202213418</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>aerodynamic levitation ; Cerium ; Chemistry ; Composition ; Conversion ; Dopants ; Emission spectra ; Erbium ; Luminescence ; Materials Science ; nonstoichiometry ; Optical properties ; Phosphors ; Physics ; Science &amp; Technology - Other Topics ; Stoichiometry ; Structural response ; Synthesis ; Wavelengths ; YAG ; Ytterbium ; Yttrium-aluminum garnet</subject><ispartof>Advanced functional materials, 2023-04, Vol.33 (14), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3848-d571eb9d18295d88ac883f5e0a3d65ede7b3096b437fd57c71847d230c26b1b83</citedby><cites>FETCH-LOGICAL-c3848-d571eb9d18295d88ac883f5e0a3d65ede7b3096b437fd57c71847d230c26b1b83</cites><orcidid>0000-0002-3355-4400 ; 0000-0002-8426-338X ; 0000-0003-2243-5438 ; 0000-0003-4306-0815 ; 0000-0003-2044-6774 ; 0000-0001-5086-5625 ; 0000-0003-0091-9546 ; 0000-0001-9317-1316 ; 0000-0003-2955-2688 ; 000000028426338X ; 0000000329552688 ; 0000000322435438 ; 0000000150865625 ; 0000000193171316 ; 0000000233554400 ; 0000000320446774 ; 0000000343060815 ; 0000000300919546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202213418$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202213418$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2423453$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Weiwei</creatorcontrib><creatorcontrib>Becerro, Ana Isabel</creatorcontrib><creatorcontrib>Castaing, Victor</creatorcontrib><creatorcontrib>Fang, Xue</creatorcontrib><creatorcontrib>Florian, Pierre</creatorcontrib><creatorcontrib>Fayon, Franck</creatorcontrib><creatorcontrib>Zanghi, Didier</creatorcontrib><creatorcontrib>Veron, Emmanuel</creatorcontrib><creatorcontrib>Zandonà, Alessio</creatorcontrib><creatorcontrib>Genevois, Cécile</creatorcontrib><creatorcontrib>Pitcher, Michael J.</creatorcontrib><creatorcontrib>Allix, Mathieu</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Highly Nonstoichiometric YAG Ceramics with Modified Luminescence Properties</title><title>Advanced functional materials</title><description>Y3Al5O12 (YAG) is a widely used phosphor host. Its optical properties are controlled by chemical substitution at its YO8 or AlO6/AlO4 sublattices, with emission wavelengths defined by rare‐earth and transition‐metal dopants that have been explored extensively. Nonstoichiometric compositions Y3+xAl5‐xO12 (x ≠ 0) may offer a route to new emission wavelengths by distributing dopants over two or more sublattices simultaneously, producing new local coordination environments for the activator ions. However, YAG typically behaves as a line phase, and such compositions are therefore challenging to synthesize. Here, a series of highly nonstoichiometric Y3+xAl5‐xO12 with 0 ≤ x ≤ 0.40 is reported, corresponding to ≤20% of the AlO6 sublattice substituted by Y3+, synthesized by advanced melt‐quenching techniques. This impacts the up‐conversion luminescence of Yb3+/Er3+‐doped systems, whose yellow‐green emission differs from the red‐orange emission of their stoichiometric counterparts. In contrast, the YAG:Ce3+ system has a different structural response to nonstoichiometry and its down‐conversion emission is only weakly affected. Analogous highly nonstoichiometric systems should be obtainable for a range of garnet materials, demonstrated here by the synthesis of Gd3.2Al4.8O12 and Gd3.2Ga4.8O12. This opens pathways to property tuning by control of host stoichiometry, and the prospect of improved performance or new applications for garnet‐type materials. A family of highly nonstoichiometric Y3Al5O12 (YAG) ceramics is isolated by advanced melt‐quenching methods. In these materials, rare‐earth dopants can populate two crystallographic sublattices, providing a mechanism for luminescence color tuning that is not available to conventional stoichiometric YAGs. The concept is generalized to other garnet ceramics including GAG and GGG, opening new avenues for exploration in this important materials class.</description><subject>aerodynamic levitation</subject><subject>Cerium</subject><subject>Chemistry</subject><subject>Composition</subject><subject>Conversion</subject><subject>Dopants</subject><subject>Emission spectra</subject><subject>Erbium</subject><subject>Luminescence</subject><subject>Materials Science</subject><subject>nonstoichiometry</subject><subject>Optical properties</subject><subject>Phosphors</subject><subject>Physics</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Stoichiometry</subject><subject>Structural response</subject><subject>Synthesis</subject><subject>Wavelengths</subject><subject>YAG</subject><subject>Ytterbium</subject><subject>Yttrium-aluminum garnet</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQCMEEqWwMkcwp_grsTNWhbaIFhhAgslK7Atx1cTFdlX135MqqIxMd8N7p9OLomuMRhghclfoqhkRRAimDIuTaIAznCUUEXF63PHHeXTh_QohzDllg-hpbr7q9T5-tq0P1qja2AaCMyr-HM_iCbiiMcrHOxPqeGm1qQzoeLFtTAteQasgfnV2Ay4Y8JfRWVWsPVz9zmH0Pn14m8yTxcvscTJeJIoKJhKdcgxlrrEgeaqFKJQQtEoBFVRnKWjgJUV5VjLKq45VHAvGNaFIkazEpaDD6Ka_a30w0isTQNXKti2oIAkjlKW0g257aOPs9xZ8kCu7dW33lyQ8Z2mWM5531KinlLPeO6jkxpmmcHuJkTxUlYeq8li1E_Je2Jk17P-h5fh-uvxzfwBVO3q4</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Cao, Weiwei</creator><creator>Becerro, Ana Isabel</creator><creator>Castaing, Victor</creator><creator>Fang, Xue</creator><creator>Florian, Pierre</creator><creator>Fayon, Franck</creator><creator>Zanghi, Didier</creator><creator>Veron, Emmanuel</creator><creator>Zandonà, Alessio</creator><creator>Genevois, Cécile</creator><creator>Pitcher, Michael J.</creator><creator>Allix, Mathieu</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3355-4400</orcidid><orcidid>https://orcid.org/0000-0002-8426-338X</orcidid><orcidid>https://orcid.org/0000-0003-2243-5438</orcidid><orcidid>https://orcid.org/0000-0003-4306-0815</orcidid><orcidid>https://orcid.org/0000-0003-2044-6774</orcidid><orcidid>https://orcid.org/0000-0001-5086-5625</orcidid><orcidid>https://orcid.org/0000-0003-0091-9546</orcidid><orcidid>https://orcid.org/0000-0001-9317-1316</orcidid><orcidid>https://orcid.org/0000-0003-2955-2688</orcidid><orcidid>https://orcid.org/000000028426338X</orcidid><orcidid>https://orcid.org/0000000329552688</orcidid><orcidid>https://orcid.org/0000000322435438</orcidid><orcidid>https://orcid.org/0000000150865625</orcidid><orcidid>https://orcid.org/0000000193171316</orcidid><orcidid>https://orcid.org/0000000233554400</orcidid><orcidid>https://orcid.org/0000000320446774</orcidid><orcidid>https://orcid.org/0000000343060815</orcidid><orcidid>https://orcid.org/0000000300919546</orcidid></search><sort><creationdate>20230401</creationdate><title>Highly Nonstoichiometric YAG Ceramics with Modified Luminescence Properties</title><author>Cao, Weiwei ; Becerro, Ana Isabel ; Castaing, Victor ; Fang, Xue ; Florian, Pierre ; Fayon, Franck ; Zanghi, Didier ; Veron, Emmanuel ; Zandonà, Alessio ; Genevois, Cécile ; Pitcher, Michael J. ; Allix, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3848-d571eb9d18295d88ac883f5e0a3d65ede7b3096b437fd57c71847d230c26b1b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aerodynamic levitation</topic><topic>Cerium</topic><topic>Chemistry</topic><topic>Composition</topic><topic>Conversion</topic><topic>Dopants</topic><topic>Emission spectra</topic><topic>Erbium</topic><topic>Luminescence</topic><topic>Materials Science</topic><topic>nonstoichiometry</topic><topic>Optical properties</topic><topic>Phosphors</topic><topic>Physics</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Stoichiometry</topic><topic>Structural response</topic><topic>Synthesis</topic><topic>Wavelengths</topic><topic>YAG</topic><topic>Ytterbium</topic><topic>Yttrium-aluminum garnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Weiwei</creatorcontrib><creatorcontrib>Becerro, Ana Isabel</creatorcontrib><creatorcontrib>Castaing, Victor</creatorcontrib><creatorcontrib>Fang, Xue</creatorcontrib><creatorcontrib>Florian, Pierre</creatorcontrib><creatorcontrib>Fayon, Franck</creatorcontrib><creatorcontrib>Zanghi, Didier</creatorcontrib><creatorcontrib>Veron, Emmanuel</creatorcontrib><creatorcontrib>Zandonà, Alessio</creatorcontrib><creatorcontrib>Genevois, Cécile</creatorcontrib><creatorcontrib>Pitcher, Michael J.</creatorcontrib><creatorcontrib>Allix, Mathieu</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Weiwei</au><au>Becerro, Ana Isabel</au><au>Castaing, Victor</au><au>Fang, Xue</au><au>Florian, Pierre</au><au>Fayon, Franck</au><au>Zanghi, Didier</au><au>Veron, Emmanuel</au><au>Zandonà, Alessio</au><au>Genevois, Cécile</au><au>Pitcher, Michael J.</au><au>Allix, Mathieu</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Nonstoichiometric YAG Ceramics with Modified Luminescence Properties</atitle><jtitle>Advanced functional materials</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>33</volume><issue>14</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Y3Al5O12 (YAG) is a widely used phosphor host. Its optical properties are controlled by chemical substitution at its YO8 or AlO6/AlO4 sublattices, with emission wavelengths defined by rare‐earth and transition‐metal dopants that have been explored extensively. Nonstoichiometric compositions Y3+xAl5‐xO12 (x ≠ 0) may offer a route to new emission wavelengths by distributing dopants over two or more sublattices simultaneously, producing new local coordination environments for the activator ions. However, YAG typically behaves as a line phase, and such compositions are therefore challenging to synthesize. Here, a series of highly nonstoichiometric Y3+xAl5‐xO12 with 0 ≤ x ≤ 0.40 is reported, corresponding to ≤20% of the AlO6 sublattice substituted by Y3+, synthesized by advanced melt‐quenching techniques. This impacts the up‐conversion luminescence of Yb3+/Er3+‐doped systems, whose yellow‐green emission differs from the red‐orange emission of their stoichiometric counterparts. In contrast, the YAG:Ce3+ system has a different structural response to nonstoichiometry and its down‐conversion emission is only weakly affected. Analogous highly nonstoichiometric systems should be obtainable for a range of garnet materials, demonstrated here by the synthesis of Gd3.2Al4.8O12 and Gd3.2Ga4.8O12. This opens pathways to property tuning by control of host stoichiometry, and the prospect of improved performance or new applications for garnet‐type materials. A family of highly nonstoichiometric Y3Al5O12 (YAG) ceramics is isolated by advanced melt‐quenching methods. In these materials, rare‐earth dopants can populate two crystallographic sublattices, providing a mechanism for luminescence color tuning that is not available to conventional stoichiometric YAGs. The concept is generalized to other garnet ceramics including GAG and GGG, opening new avenues for exploration in this important materials class.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202213418</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3355-4400</orcidid><orcidid>https://orcid.org/0000-0002-8426-338X</orcidid><orcidid>https://orcid.org/0000-0003-2243-5438</orcidid><orcidid>https://orcid.org/0000-0003-4306-0815</orcidid><orcidid>https://orcid.org/0000-0003-2044-6774</orcidid><orcidid>https://orcid.org/0000-0001-5086-5625</orcidid><orcidid>https://orcid.org/0000-0003-0091-9546</orcidid><orcidid>https://orcid.org/0000-0001-9317-1316</orcidid><orcidid>https://orcid.org/0000-0003-2955-2688</orcidid><orcidid>https://orcid.org/000000028426338X</orcidid><orcidid>https://orcid.org/0000000329552688</orcidid><orcidid>https://orcid.org/0000000322435438</orcidid><orcidid>https://orcid.org/0000000150865625</orcidid><orcidid>https://orcid.org/0000000193171316</orcidid><orcidid>https://orcid.org/0000000233554400</orcidid><orcidid>https://orcid.org/0000000320446774</orcidid><orcidid>https://orcid.org/0000000343060815</orcidid><orcidid>https://orcid.org/0000000300919546</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-04, Vol.33 (14), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_2423453
source Wiley Online Library
subjects aerodynamic levitation
Cerium
Chemistry
Composition
Conversion
Dopants
Emission spectra
Erbium
Luminescence
Materials Science
nonstoichiometry
Optical properties
Phosphors
Physics
Science & Technology - Other Topics
Stoichiometry
Structural response
Synthesis
Wavelengths
YAG
Ytterbium
Yttrium-aluminum garnet
title Highly Nonstoichiometric YAG Ceramics with Modified Luminescence Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Nonstoichiometric%20YAG%20Ceramics%20with%20Modified%20Luminescence%20Properties&rft.jtitle=Advanced%20functional%20materials&rft.au=Cao,%20Weiwei&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2023-04-01&rft.volume=33&rft.issue=14&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202213418&rft_dat=%3Cproquest_osti_%3E2794569479%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794569479&rft_id=info:pmid/&rfr_iscdi=true