Demonstration of three- and four-body interactions between trapped-ion spins
Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement gen...
Gespeichert in:
Veröffentlicht in: | Nature physics 2023-06, Vol.19 (10), p.1452-1458 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1458 |
---|---|
container_issue | 10 |
container_start_page | 1452 |
container_title | Nature physics |
container_volume | 19 |
creator | Katz, Or Feng, Lei Risinger, Andrew Monroe, Christopher Cetina, Marko |
description | Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement generated by higher-order interactions is a key challenge for the simulation of many Hamiltonian models appearing in various fields, including high-energy and nuclear physics, as well as quantum chemistry and error correction applications. Here we experimentally demonstrate control over a class of native interactions between trapped-ion qubits, extending conventional pairwise interactions to a higher order. By exploiting state-dependent squeezing operations, we realize and characterize high-fidelity gates and spin Hamiltonians comprising three- and four-body spin interactions. Our results demonstrate the potential of high-order spin interactions as a toolbox for quantum information applications.
Generation of entanglement in quantum computers stems from the native interactions between qubits, which are usually restricted to the pairwise limit. A method to control three- and four-body interactions has now been demonstrated with trapped ions. |
doi_str_mv | 10.1038/s41567-023-02102-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2423165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875654522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-16fadd1e5adb50600216a450ccec7f587312c172403200f4245a98610be9e8af3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOi52i-sz1K_YSCFz2HNDuxW2yyJinSf2_qit48DDOH5xlmXoTOKbmihLfXWVCpNCaM16KEYX2AJlQLiZlo6eHvrPkxOsl5TYhgivIJWtzCJoZcki19DE30TVklANzY0DU-bhNexm7X9KFAsm7P5GYJ5RMgNFUaBujwXsxDH_IpOvL2PcPZT5-i1_u7l_kjXjw_PM1vFthxoQqmytuuoyBtt5REkXqxskIS58BpL1vNKXNUM0E4I8QLJqSdtYqSJcygtZ5P0cW4N-bSm-z6Am7lYgjgimGCcapkhS5HaEjxYwu5mHV9J9S7DGu1VFJIxirFRsqlmHMCb4bUb2zaGUrMPlozRmtqtOY7WqOrxEcpVzi8Qfpb_Y_1BVCDeuk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875654522</pqid></control><display><type>article</type><title>Demonstration of three- and four-body interactions between trapped-ion spins</title><source>Springer Nature - Connect here FIRST to enable access</source><source>Alma/SFX Local Collection</source><creator>Katz, Or ; Feng, Lei ; Risinger, Andrew ; Monroe, Christopher ; Cetina, Marko</creator><creatorcontrib>Katz, Or ; Feng, Lei ; Risinger, Andrew ; Monroe, Christopher ; Cetina, Marko ; National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</creatorcontrib><description>Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement generated by higher-order interactions is a key challenge for the simulation of many Hamiltonian models appearing in various fields, including high-energy and nuclear physics, as well as quantum chemistry and error correction applications. Here we experimentally demonstrate control over a class of native interactions between trapped-ion qubits, extending conventional pairwise interactions to a higher order. By exploiting state-dependent squeezing operations, we realize and characterize high-fidelity gates and spin Hamiltonians comprising three- and four-body spin interactions. Our results demonstrate the potential of high-order spin interactions as a toolbox for quantum information applications.
Generation of entanglement in quantum computers stems from the native interactions between qubits, which are usually restricted to the pairwise limit. A method to control three- and four-body interactions has now been demonstrated with trapped ions.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-023-02102-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/1121 ; 639/766/483/3926 ; 639/766/483/481 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Computer engineering ; Condensed Matter Physics ; Control methods ; Error correction ; Error correction & detection ; Mathematical and Computational Physics ; Molecular ; Nuclear physics ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Processors ; Quantum chemistry ; Quantum computers ; Quantum computing ; Quantum entanglement ; Quantum phenomena ; Qubits (quantum computing) ; Simulation ; Theoretical</subject><ispartof>Nature physics, 2023-06, Vol.19 (10), p.1452-1458</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-16fadd1e5adb50600216a450ccec7f587312c172403200f4245a98610be9e8af3</citedby><cites>FETCH-LOGICAL-c346t-16fadd1e5adb50600216a450ccec7f587312c172403200f4245a98610be9e8af3</cites><orcidid>0000-0001-7634-1993 ; 0000000176341993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2423165$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Katz, Or</creatorcontrib><creatorcontrib>Feng, Lei</creatorcontrib><creatorcontrib>Risinger, Andrew</creatorcontrib><creatorcontrib>Monroe, Christopher</creatorcontrib><creatorcontrib>Cetina, Marko</creatorcontrib><creatorcontrib>National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</creatorcontrib><title>Demonstration of three- and four-body interactions between trapped-ion spins</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement generated by higher-order interactions is a key challenge for the simulation of many Hamiltonian models appearing in various fields, including high-energy and nuclear physics, as well as quantum chemistry and error correction applications. Here we experimentally demonstrate control over a class of native interactions between trapped-ion qubits, extending conventional pairwise interactions to a higher order. By exploiting state-dependent squeezing operations, we realize and characterize high-fidelity gates and spin Hamiltonians comprising three- and four-body spin interactions. Our results demonstrate the potential of high-order spin interactions as a toolbox for quantum information applications.
Generation of entanglement in quantum computers stems from the native interactions between qubits, which are usually restricted to the pairwise limit. A method to control three- and four-body interactions has now been demonstrated with trapped ions.</description><subject>639/766/36/1121</subject><subject>639/766/483/3926</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Computer engineering</subject><subject>Condensed Matter Physics</subject><subject>Control methods</subject><subject>Error correction</subject><subject>Error correction & detection</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nuclear physics</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processors</subject><subject>Quantum chemistry</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOi52i-sz1K_YSCFz2HNDuxW2yyJinSf2_qit48DDOH5xlmXoTOKbmihLfXWVCpNCaM16KEYX2AJlQLiZlo6eHvrPkxOsl5TYhgivIJWtzCJoZcki19DE30TVklANzY0DU-bhNexm7X9KFAsm7P5GYJ5RMgNFUaBujwXsxDH_IpOvL2PcPZT5-i1_u7l_kjXjw_PM1vFthxoQqmytuuoyBtt5REkXqxskIS58BpL1vNKXNUM0E4I8QLJqSdtYqSJcygtZ5P0cW4N-bSm-z6Am7lYgjgimGCcapkhS5HaEjxYwu5mHV9J9S7DGu1VFJIxirFRsqlmHMCb4bUb2zaGUrMPlozRmtqtOY7WqOrxEcpVzi8Qfpb_Y_1BVCDeuk</recordid><startdate>20230629</startdate><enddate>20230629</enddate><creator>Katz, Or</creator><creator>Feng, Lei</creator><creator>Risinger, Andrew</creator><creator>Monroe, Christopher</creator><creator>Cetina, Marko</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7634-1993</orcidid><orcidid>https://orcid.org/0000000176341993</orcidid></search><sort><creationdate>20230629</creationdate><title>Demonstration of three- and four-body interactions between trapped-ion spins</title><author>Katz, Or ; Feng, Lei ; Risinger, Andrew ; Monroe, Christopher ; Cetina, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-16fadd1e5adb50600216a450ccec7f587312c172403200f4245a98610be9e8af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/36/1121</topic><topic>639/766/483/3926</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Computer engineering</topic><topic>Condensed Matter Physics</topic><topic>Control methods</topic><topic>Error correction</topic><topic>Error correction & detection</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nuclear physics</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processors</topic><topic>Quantum chemistry</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Or</creatorcontrib><creatorcontrib>Feng, Lei</creatorcontrib><creatorcontrib>Risinger, Andrew</creatorcontrib><creatorcontrib>Monroe, Christopher</creatorcontrib><creatorcontrib>Cetina, Marko</creatorcontrib><creatorcontrib>National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, Or</au><au>Feng, Lei</au><au>Risinger, Andrew</au><au>Monroe, Christopher</au><au>Cetina, Marko</au><aucorp>National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of three- and four-body interactions between trapped-ion spins</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2023-06-29</date><risdate>2023</risdate><volume>19</volume><issue>10</issue><spage>1452</spage><epage>1458</epage><pages>1452-1458</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement generated by higher-order interactions is a key challenge for the simulation of many Hamiltonian models appearing in various fields, including high-energy and nuclear physics, as well as quantum chemistry and error correction applications. Here we experimentally demonstrate control over a class of native interactions between trapped-ion qubits, extending conventional pairwise interactions to a higher order. By exploiting state-dependent squeezing operations, we realize and characterize high-fidelity gates and spin Hamiltonians comprising three- and four-body spin interactions. Our results demonstrate the potential of high-order spin interactions as a toolbox for quantum information applications.
Generation of entanglement in quantum computers stems from the native interactions between qubits, which are usually restricted to the pairwise limit. A method to control three- and four-body interactions has now been demonstrated with trapped ions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-023-02102-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7634-1993</orcidid><orcidid>https://orcid.org/0000000176341993</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2023-06, Vol.19 (10), p.1452-1458 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_osti_scitechconnect_2423165 |
source | Springer Nature - Connect here FIRST to enable access; Alma/SFX Local Collection |
subjects | 639/766/36/1121 639/766/483/3926 639/766/483/481 Atomic Classical and Continuum Physics Complex Systems Computer engineering Condensed Matter Physics Control methods Error correction Error correction & detection Mathematical and Computational Physics Molecular Nuclear physics Optical and Plasma Physics Physics Physics and Astronomy Processors Quantum chemistry Quantum computers Quantum computing Quantum entanglement Quantum phenomena Qubits (quantum computing) Simulation Theoretical |
title | Demonstration of three- and four-body interactions between trapped-ion spins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20three-%20and%20four-body%20interactions%20between%20trapped-ion%20spins&rft.jtitle=Nature%20physics&rft.au=Katz,%20Or&rft.aucorp=National%20Quantum%20Information%20Science%20(QIS)%20Research%20Centers%20(United%20States).%20Quantum%20Systems%20Accelerator%20(QSA)&rft.date=2023-06-29&rft.volume=19&rft.issue=10&rft.spage=1452&rft.epage=1458&rft.pages=1452-1458&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-023-02102-7&rft_dat=%3Cproquest_osti_%3E2875654522%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875654522&rft_id=info:pmid/&rfr_iscdi=true |