Demonstration of three- and four-body interactions between trapped-ion spins

Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2023-06, Vol.19 (10), p.1452-1458
Hauptverfasser: Katz, Or, Feng, Lei, Risinger, Andrew, Monroe, Christopher, Cetina, Marko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1458
container_issue 10
container_start_page 1452
container_title Nature physics
container_volume 19
creator Katz, Or
Feng, Lei
Risinger, Andrew
Monroe, Christopher
Cetina, Marko
description Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement generated by higher-order interactions is a key challenge for the simulation of many Hamiltonian models appearing in various fields, including high-energy and nuclear physics, as well as quantum chemistry and error correction applications. Here we experimentally demonstrate control over a class of native interactions between trapped-ion qubits, extending conventional pairwise interactions to a higher order. By exploiting state-dependent squeezing operations, we realize and characterize high-fidelity gates and spin Hamiltonians comprising three- and four-body spin interactions. Our results demonstrate the potential of high-order spin interactions as a toolbox for quantum information applications. Generation of entanglement in quantum computers stems from the native interactions between qubits, which are usually restricted to the pairwise limit. A method to control three- and four-body interactions has now been demonstrated with trapped ions.
doi_str_mv 10.1038/s41567-023-02102-7
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2423165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875654522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-16fadd1e5adb50600216a450ccec7f587312c172403200f4245a98610be9e8af3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOi52i-sz1K_YSCFz2HNDuxW2yyJinSf2_qit48DDOH5xlmXoTOKbmihLfXWVCpNCaM16KEYX2AJlQLiZlo6eHvrPkxOsl5TYhgivIJWtzCJoZcki19DE30TVklANzY0DU-bhNexm7X9KFAsm7P5GYJ5RMgNFUaBujwXsxDH_IpOvL2PcPZT5-i1_u7l_kjXjw_PM1vFthxoQqmytuuoyBtt5REkXqxskIS58BpL1vNKXNUM0E4I8QLJqSdtYqSJcygtZ5P0cW4N-bSm-z6Am7lYgjgimGCcapkhS5HaEjxYwu5mHV9J9S7DGu1VFJIxirFRsqlmHMCb4bUb2zaGUrMPlozRmtqtOY7WqOrxEcpVzi8Qfpb_Y_1BVCDeuk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875654522</pqid></control><display><type>article</type><title>Demonstration of three- and four-body interactions between trapped-ion spins</title><source>Springer Nature - Connect here FIRST to enable access</source><source>Alma/SFX Local Collection</source><creator>Katz, Or ; Feng, Lei ; Risinger, Andrew ; Monroe, Christopher ; Cetina, Marko</creator><creatorcontrib>Katz, Or ; Feng, Lei ; Risinger, Andrew ; Monroe, Christopher ; Cetina, Marko ; National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</creatorcontrib><description>Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement generated by higher-order interactions is a key challenge for the simulation of many Hamiltonian models appearing in various fields, including high-energy and nuclear physics, as well as quantum chemistry and error correction applications. Here we experimentally demonstrate control over a class of native interactions between trapped-ion qubits, extending conventional pairwise interactions to a higher order. By exploiting state-dependent squeezing operations, we realize and characterize high-fidelity gates and spin Hamiltonians comprising three- and four-body spin interactions. Our results demonstrate the potential of high-order spin interactions as a toolbox for quantum information applications. Generation of entanglement in quantum computers stems from the native interactions between qubits, which are usually restricted to the pairwise limit. A method to control three- and four-body interactions has now been demonstrated with trapped ions.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-023-02102-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/1121 ; 639/766/483/3926 ; 639/766/483/481 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Computer engineering ; Condensed Matter Physics ; Control methods ; Error correction ; Error correction &amp; detection ; Mathematical and Computational Physics ; Molecular ; Nuclear physics ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Processors ; Quantum chemistry ; Quantum computers ; Quantum computing ; Quantum entanglement ; Quantum phenomena ; Qubits (quantum computing) ; Simulation ; Theoretical</subject><ispartof>Nature physics, 2023-06, Vol.19 (10), p.1452-1458</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-16fadd1e5adb50600216a450ccec7f587312c172403200f4245a98610be9e8af3</citedby><cites>FETCH-LOGICAL-c346t-16fadd1e5adb50600216a450ccec7f587312c172403200f4245a98610be9e8af3</cites><orcidid>0000-0001-7634-1993 ; 0000000176341993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2423165$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Katz, Or</creatorcontrib><creatorcontrib>Feng, Lei</creatorcontrib><creatorcontrib>Risinger, Andrew</creatorcontrib><creatorcontrib>Monroe, Christopher</creatorcontrib><creatorcontrib>Cetina, Marko</creatorcontrib><creatorcontrib>National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</creatorcontrib><title>Demonstration of three- and four-body interactions between trapped-ion spins</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement generated by higher-order interactions is a key challenge for the simulation of many Hamiltonian models appearing in various fields, including high-energy and nuclear physics, as well as quantum chemistry and error correction applications. Here we experimentally demonstrate control over a class of native interactions between trapped-ion qubits, extending conventional pairwise interactions to a higher order. By exploiting state-dependent squeezing operations, we realize and characterize high-fidelity gates and spin Hamiltonians comprising three- and four-body spin interactions. Our results demonstrate the potential of high-order spin interactions as a toolbox for quantum information applications. Generation of entanglement in quantum computers stems from the native interactions between qubits, which are usually restricted to the pairwise limit. A method to control three- and four-body interactions has now been demonstrated with trapped ions.</description><subject>639/766/36/1121</subject><subject>639/766/483/3926</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Computer engineering</subject><subject>Condensed Matter Physics</subject><subject>Control methods</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nuclear physics</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processors</subject><subject>Quantum chemistry</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOi52i-sz1K_YSCFz2HNDuxW2yyJinSf2_qit48DDOH5xlmXoTOKbmihLfXWVCpNCaM16KEYX2AJlQLiZlo6eHvrPkxOsl5TYhgivIJWtzCJoZcki19DE30TVklANzY0DU-bhNexm7X9KFAsm7P5GYJ5RMgNFUaBujwXsxDH_IpOvL2PcPZT5-i1_u7l_kjXjw_PM1vFthxoQqmytuuoyBtt5REkXqxskIS58BpL1vNKXNUM0E4I8QLJqSdtYqSJcygtZ5P0cW4N-bSm-z6Am7lYgjgimGCcapkhS5HaEjxYwu5mHV9J9S7DGu1VFJIxirFRsqlmHMCb4bUb2zaGUrMPlozRmtqtOY7WqOrxEcpVzi8Qfpb_Y_1BVCDeuk</recordid><startdate>20230629</startdate><enddate>20230629</enddate><creator>Katz, Or</creator><creator>Feng, Lei</creator><creator>Risinger, Andrew</creator><creator>Monroe, Christopher</creator><creator>Cetina, Marko</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7634-1993</orcidid><orcidid>https://orcid.org/0000000176341993</orcidid></search><sort><creationdate>20230629</creationdate><title>Demonstration of three- and four-body interactions between trapped-ion spins</title><author>Katz, Or ; Feng, Lei ; Risinger, Andrew ; Monroe, Christopher ; Cetina, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-16fadd1e5adb50600216a450ccec7f587312c172403200f4245a98610be9e8af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/36/1121</topic><topic>639/766/483/3926</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Computer engineering</topic><topic>Condensed Matter Physics</topic><topic>Control methods</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nuclear physics</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processors</topic><topic>Quantum chemistry</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Or</creatorcontrib><creatorcontrib>Feng, Lei</creatorcontrib><creatorcontrib>Risinger, Andrew</creatorcontrib><creatorcontrib>Monroe, Christopher</creatorcontrib><creatorcontrib>Cetina, Marko</creatorcontrib><creatorcontrib>National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, Or</au><au>Feng, Lei</au><au>Risinger, Andrew</au><au>Monroe, Christopher</au><au>Cetina, Marko</au><aucorp>National Quantum Information Science (QIS) Research Centers (United States). Quantum Systems Accelerator (QSA)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of three- and four-body interactions between trapped-ion spins</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2023-06-29</date><risdate>2023</risdate><volume>19</volume><issue>10</issue><spage>1452</spage><epage>1458</epage><pages>1452-1458</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement generated by higher-order interactions is a key challenge for the simulation of many Hamiltonian models appearing in various fields, including high-energy and nuclear physics, as well as quantum chemistry and error correction applications. Here we experimentally demonstrate control over a class of native interactions between trapped-ion qubits, extending conventional pairwise interactions to a higher order. By exploiting state-dependent squeezing operations, we realize and characterize high-fidelity gates and spin Hamiltonians comprising three- and four-body spin interactions. Our results demonstrate the potential of high-order spin interactions as a toolbox for quantum information applications. Generation of entanglement in quantum computers stems from the native interactions between qubits, which are usually restricted to the pairwise limit. A method to control three- and four-body interactions has now been demonstrated with trapped ions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-023-02102-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7634-1993</orcidid><orcidid>https://orcid.org/0000000176341993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2023-06, Vol.19 (10), p.1452-1458
issn 1745-2473
1745-2481
language eng
recordid cdi_osti_scitechconnect_2423165
source Springer Nature - Connect here FIRST to enable access; Alma/SFX Local Collection
subjects 639/766/36/1121
639/766/483/3926
639/766/483/481
Atomic
Classical and Continuum Physics
Complex Systems
Computer engineering
Condensed Matter Physics
Control methods
Error correction
Error correction & detection
Mathematical and Computational Physics
Molecular
Nuclear physics
Optical and Plasma Physics
Physics
Physics and Astronomy
Processors
Quantum chemistry
Quantum computers
Quantum computing
Quantum entanglement
Quantum phenomena
Qubits (quantum computing)
Simulation
Theoretical
title Demonstration of three- and four-body interactions between trapped-ion spins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20three-%20and%20four-body%20interactions%20between%20trapped-ion%20spins&rft.jtitle=Nature%20physics&rft.au=Katz,%20Or&rft.aucorp=National%20Quantum%20Information%20Science%20(QIS)%20Research%20Centers%20(United%20States).%20Quantum%20Systems%20Accelerator%20(QSA)&rft.date=2023-06-29&rft.volume=19&rft.issue=10&rft.spage=1452&rft.epage=1458&rft.pages=1452-1458&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-023-02102-7&rft_dat=%3Cproquest_osti_%3E2875654522%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875654522&rft_id=info:pmid/&rfr_iscdi=true