Nonvolatile Magnetoelectric Switching of Magnetic Tunnel Junctions with Dipole Interaction
Abstract The magnetoelectric effect is technologically appealing because of its ability to manipulate magnetism using an electric field rather than magnetic field or current, thus providing a promising solution for the development of energy‐efficient spintronics. Although 180° magnetization switchin...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-03, Vol.33 (23) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Chen, Aitian Peng, Ren‐Ci Fang, Bin Yang, Tiannan Wen, Yan Zheng, Dongxing Zhang, Chenhui Liu, Chen Li, Zibin Li, Peisen Li, Yan Zhao, Yonggang Nan, Ce‐Wen Qiu, Ziqiang Chen, Long‐Qing Zhang, Xi‐Xiang |
description | Abstract
The magnetoelectric effect is technologically appealing because of its ability to manipulate magnetism using an electric field rather than magnetic field or current, thus providing a promising solution for the development of energy‐efficient spintronics. Although 180° magnetization switching is vital to spintronic devices, the achievement of 180° magnetization switching via magnetoelectric coupling is still a fundamental challenge. Herein, voltage‐driven full resistance switching of a magnetic tunnel junction (MTJ) with dipole interaction on a ferroelectric substrate through switchable parallel/antiparallel magnetization alignment is demonstrated. Parallel magnetization alignment along the
y
direction is obtained under a bias magnetic field. By rotating the magnetic easy axis via strain‐mediated magnetoelectric coupling, the parallel magnetizations in the MTJ reorient to the
x
axis with opposite paths because of dipole interaction, thus resulting in antiparallel alignment. Moreover, this voltage switching of MTJs is nonvolatile owing to variations in dipole interaction and can be well understood via phase field simulations. The results provide an avenue to realize electrical switching of MTJs and are significant for exploring energy‐efficient spintronic devices. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2422588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422588</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24225883</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRbNQsD7-Ibgv9GXbvQ9U0I1diJsShmkbCRNppvr7BukHuLpwz-FMRBDncR6mUXyfiblzzyiKiyLNAvG4Wnpbo1gblBfVErJFg8C9Bnn7aIZOUyttM0L_VgMRGnkeCFhbctJbndzpl_WJEzH26geWYtoo43A17kKsD_tqewytY1070IzQgfUx4DrJkmRTlulf0he--ULz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonvolatile Magnetoelectric Switching of Magnetic Tunnel Junctions with Dipole Interaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Aitian ; Peng, Ren‐Ci ; Fang, Bin ; Yang, Tiannan ; Wen, Yan ; Zheng, Dongxing ; Zhang, Chenhui ; Liu, Chen ; Li, Zibin ; Li, Peisen ; Li, Yan ; Zhao, Yonggang ; Nan, Ce‐Wen ; Qiu, Ziqiang ; Chen, Long‐Qing ; Zhang, Xi‐Xiang</creator><creatorcontrib>Chen, Aitian ; Peng, Ren‐Ci ; Fang, Bin ; Yang, Tiannan ; Wen, Yan ; Zheng, Dongxing ; Zhang, Chenhui ; Liu, Chen ; Li, Zibin ; Li, Peisen ; Li, Yan ; Zhao, Yonggang ; Nan, Ce‐Wen ; Qiu, Ziqiang ; Chen, Long‐Qing ; Zhang, Xi‐Xiang ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Abstract
The magnetoelectric effect is technologically appealing because of its ability to manipulate magnetism using an electric field rather than magnetic field or current, thus providing a promising solution for the development of energy‐efficient spintronics. Although 180° magnetization switching is vital to spintronic devices, the achievement of 180° magnetization switching via magnetoelectric coupling is still a fundamental challenge. Herein, voltage‐driven full resistance switching of a magnetic tunnel junction (MTJ) with dipole interaction on a ferroelectric substrate through switchable parallel/antiparallel magnetization alignment is demonstrated. Parallel magnetization alignment along the
y
direction is obtained under a bias magnetic field. By rotating the magnetic easy axis via strain‐mediated magnetoelectric coupling, the parallel magnetizations in the MTJ reorient to the
x
axis with opposite paths because of dipole interaction, thus resulting in antiparallel alignment. Moreover, this voltage switching of MTJs is nonvolatile owing to variations in dipole interaction and can be well understood via phase field simulations. The results provide an avenue to realize electrical switching of MTJs and are significant for exploring energy‐efficient spintronic devices.</description><identifier>ISSN: 1616-301X</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>dipole interactions ; magnetic tunnel junctions ; magnetoelectric coupling ; MATERIALS SCIENCE ; multiferroic heterostructures ; spintronic devices</subject><ispartof>Advanced functional materials, 2023-03, Vol.33 (23)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000180300553 ; 0000000335359470 ; 0000000231978904 ; 0000000234786414 ; 0000000214251519 ; 0000000220714778 ; 0000000333593781 ; 0000000232614053 ; 0000000201246315 ; 0000000278037378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2422588$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Aitian</creatorcontrib><creatorcontrib>Peng, Ren‐Ci</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Yang, Tiannan</creatorcontrib><creatorcontrib>Wen, Yan</creatorcontrib><creatorcontrib>Zheng, Dongxing</creatorcontrib><creatorcontrib>Zhang, Chenhui</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Li, Zibin</creatorcontrib><creatorcontrib>Li, Peisen</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhao, Yonggang</creatorcontrib><creatorcontrib>Nan, Ce‐Wen</creatorcontrib><creatorcontrib>Qiu, Ziqiang</creatorcontrib><creatorcontrib>Chen, Long‐Qing</creatorcontrib><creatorcontrib>Zhang, Xi‐Xiang</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Nonvolatile Magnetoelectric Switching of Magnetic Tunnel Junctions with Dipole Interaction</title><title>Advanced functional materials</title><description>Abstract
The magnetoelectric effect is technologically appealing because of its ability to manipulate magnetism using an electric field rather than magnetic field or current, thus providing a promising solution for the development of energy‐efficient spintronics. Although 180° magnetization switching is vital to spintronic devices, the achievement of 180° magnetization switching via magnetoelectric coupling is still a fundamental challenge. Herein, voltage‐driven full resistance switching of a magnetic tunnel junction (MTJ) with dipole interaction on a ferroelectric substrate through switchable parallel/antiparallel magnetization alignment is demonstrated. Parallel magnetization alignment along the
y
direction is obtained under a bias magnetic field. By rotating the magnetic easy axis via strain‐mediated magnetoelectric coupling, the parallel magnetizations in the MTJ reorient to the
x
axis with opposite paths because of dipole interaction, thus resulting in antiparallel alignment. Moreover, this voltage switching of MTJs is nonvolatile owing to variations in dipole interaction and can be well understood via phase field simulations. The results provide an avenue to realize electrical switching of MTJs and are significant for exploring energy‐efficient spintronic devices.</description><subject>dipole interactions</subject><subject>magnetic tunnel junctions</subject><subject>magnetoelectric coupling</subject><subject>MATERIALS SCIENCE</subject><subject>multiferroic heterostructures</subject><subject>spintronic devices</subject><issn>1616-301X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjMsKwjAQRbNQsD7-Ibgv9GXbvQ9U0I1diJsShmkbCRNppvr7BukHuLpwz-FMRBDncR6mUXyfiblzzyiKiyLNAvG4Wnpbo1gblBfVErJFg8C9Bnn7aIZOUyttM0L_VgMRGnkeCFhbctJbndzpl_WJEzH26geWYtoo43A17kKsD_tqewytY1070IzQgfUx4DrJkmRTlulf0he--ULz</recordid><startdate>20230310</startdate><enddate>20230310</enddate><creator>Chen, Aitian</creator><creator>Peng, Ren‐Ci</creator><creator>Fang, Bin</creator><creator>Yang, Tiannan</creator><creator>Wen, Yan</creator><creator>Zheng, Dongxing</creator><creator>Zhang, Chenhui</creator><creator>Liu, Chen</creator><creator>Li, Zibin</creator><creator>Li, Peisen</creator><creator>Li, Yan</creator><creator>Zhao, Yonggang</creator><creator>Nan, Ce‐Wen</creator><creator>Qiu, Ziqiang</creator><creator>Chen, Long‐Qing</creator><creator>Zhang, Xi‐Xiang</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000180300553</orcidid><orcidid>https://orcid.org/0000000335359470</orcidid><orcidid>https://orcid.org/0000000231978904</orcidid><orcidid>https://orcid.org/0000000234786414</orcidid><orcidid>https://orcid.org/0000000214251519</orcidid><orcidid>https://orcid.org/0000000220714778</orcidid><orcidid>https://orcid.org/0000000333593781</orcidid><orcidid>https://orcid.org/0000000232614053</orcidid><orcidid>https://orcid.org/0000000201246315</orcidid><orcidid>https://orcid.org/0000000278037378</orcidid></search><sort><creationdate>20230310</creationdate><title>Nonvolatile Magnetoelectric Switching of Magnetic Tunnel Junctions with Dipole Interaction</title><author>Chen, Aitian ; Peng, Ren‐Ci ; Fang, Bin ; Yang, Tiannan ; Wen, Yan ; Zheng, Dongxing ; Zhang, Chenhui ; Liu, Chen ; Li, Zibin ; Li, Peisen ; Li, Yan ; Zhao, Yonggang ; Nan, Ce‐Wen ; Qiu, Ziqiang ; Chen, Long‐Qing ; Zhang, Xi‐Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24225883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>dipole interactions</topic><topic>magnetic tunnel junctions</topic><topic>magnetoelectric coupling</topic><topic>MATERIALS SCIENCE</topic><topic>multiferroic heterostructures</topic><topic>spintronic devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Aitian</creatorcontrib><creatorcontrib>Peng, Ren‐Ci</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Yang, Tiannan</creatorcontrib><creatorcontrib>Wen, Yan</creatorcontrib><creatorcontrib>Zheng, Dongxing</creatorcontrib><creatorcontrib>Zhang, Chenhui</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Li, Zibin</creatorcontrib><creatorcontrib>Li, Peisen</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhao, Yonggang</creatorcontrib><creatorcontrib>Nan, Ce‐Wen</creatorcontrib><creatorcontrib>Qiu, Ziqiang</creatorcontrib><creatorcontrib>Chen, Long‐Qing</creatorcontrib><creatorcontrib>Zhang, Xi‐Xiang</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Aitian</au><au>Peng, Ren‐Ci</au><au>Fang, Bin</au><au>Yang, Tiannan</au><au>Wen, Yan</au><au>Zheng, Dongxing</au><au>Zhang, Chenhui</au><au>Liu, Chen</au><au>Li, Zibin</au><au>Li, Peisen</au><au>Li, Yan</au><au>Zhao, Yonggang</au><au>Nan, Ce‐Wen</au><au>Qiu, Ziqiang</au><au>Chen, Long‐Qing</au><au>Zhang, Xi‐Xiang</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonvolatile Magnetoelectric Switching of Magnetic Tunnel Junctions with Dipole Interaction</atitle><jtitle>Advanced functional materials</jtitle><date>2023-03-10</date><risdate>2023</risdate><volume>33</volume><issue>23</issue><issn>1616-301X</issn><abstract>Abstract
The magnetoelectric effect is technologically appealing because of its ability to manipulate magnetism using an electric field rather than magnetic field or current, thus providing a promising solution for the development of energy‐efficient spintronics. Although 180° magnetization switching is vital to spintronic devices, the achievement of 180° magnetization switching via magnetoelectric coupling is still a fundamental challenge. Herein, voltage‐driven full resistance switching of a magnetic tunnel junction (MTJ) with dipole interaction on a ferroelectric substrate through switchable parallel/antiparallel magnetization alignment is demonstrated. Parallel magnetization alignment along the
y
direction is obtained under a bias magnetic field. By rotating the magnetic easy axis via strain‐mediated magnetoelectric coupling, the parallel magnetizations in the MTJ reorient to the
x
axis with opposite paths because of dipole interaction, thus resulting in antiparallel alignment. Moreover, this voltage switching of MTJs is nonvolatile owing to variations in dipole interaction and can be well understood via phase field simulations. The results provide an avenue to realize electrical switching of MTJs and are significant for exploring energy‐efficient spintronic devices.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000180300553</orcidid><orcidid>https://orcid.org/0000000335359470</orcidid><orcidid>https://orcid.org/0000000231978904</orcidid><orcidid>https://orcid.org/0000000234786414</orcidid><orcidid>https://orcid.org/0000000214251519</orcidid><orcidid>https://orcid.org/0000000220714778</orcidid><orcidid>https://orcid.org/0000000333593781</orcidid><orcidid>https://orcid.org/0000000232614053</orcidid><orcidid>https://orcid.org/0000000201246315</orcidid><orcidid>https://orcid.org/0000000278037378</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-03, Vol.33 (23) |
issn | 1616-301X |
language | eng |
recordid | cdi_osti_scitechconnect_2422588 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | dipole interactions magnetic tunnel junctions magnetoelectric coupling MATERIALS SCIENCE multiferroic heterostructures spintronic devices |
title | Nonvolatile Magnetoelectric Switching of Magnetic Tunnel Junctions with Dipole Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonvolatile%20Magnetoelectric%20Switching%20of%20Magnetic%20Tunnel%20Junctions%20with%20Dipole%20Interaction&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Aitian&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2023-03-10&rft.volume=33&rft.issue=23&rft.issn=1616-301X&rft_id=info:doi/&rft_dat=%3Costi%3E2422588%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |