The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event

A central feature of the current understanding of dinitrogen (N2) reduction by the enzyme nitrogenase is the proposed coupling of the hydrolysis of two ATP, forming two ADP and two Pi, to the transfer of one electron from the Fe protein component to the MoFe protein component, where substrates are r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-03, Vol.145 (10), p.5637-5644
Hauptverfasser: Yang, Zhi-Yong, Badalyan, Artavazd, Hoffman, Brian M., Dean, Dennis R., Seefeldt, Lance C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5644
container_issue 10
container_start_page 5637
container_title Journal of the American Chemical Society
container_volume 145
creator Yang, Zhi-Yong
Badalyan, Artavazd
Hoffman, Brian M.
Dean, Dennis R.
Seefeldt, Lance C.
description A central feature of the current understanding of dinitrogen (N2) reduction by the enzyme nitrogenase is the proposed coupling of the hydrolysis of two ATP, forming two ADP and two Pi, to the transfer of one electron from the Fe protein component to the MoFe protein component, where substrates are reduced. A redox-active [4Fe-4S] cluster associated with the Fe protein is the agent of electron delivery, and it is well known to have a capacity to cycle between a one-electron-reduced [4Fe-4S]1+ state and an oxidized [4Fe-4S]2+ state. Recently, however, it has been shown that certain reducing agents can be used to further reduce the Fe protein [4Fe-4S] cluster to a super-reduced, all-ferrous [4Fe-4S]0 state that can be either diamagnetic (S = 0) or paramagnetic (S = 4). It has been proposed that the super-reduced state might fundamentally alter the existing model for nitrogenase energy utilization by the transfer of two electrons per Fe protein cycle linked to hydrolysis of only two ATP molecules. Here, we measure the number of ATP consumed for each electron transfer under steady-state catalysis while the Fe protein cluster is in the [4Fe-4S]1+ state and when it is in the [4Fe-4S]0 state. Both oxidation states of the Fe protein are found to operate by hydrolyzing two ATP for each single-electron transfer event. Thus, regardless of its initial redox state, the Fe protein transfers only one electron at a time to the MoFe protein in a process that requires the hydrolysis of two ATP.
doi_str_mv 10.1021/jacs.2c09576
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2422483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781620904</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-65bc1b35d0ae6a03acd8665d1788f773b825d3fb611394d0d03b0423238ffa73</originalsourceid><addsrcrecordid>eNptkU-PEyEYh4nRuHX15tkQTx6clT8zDD02Tdc12ehG504YeNnSTGEXGDf9AH5vaVr14okAD8_L-_4QekvJFSWMftppk6-YIcuuF8_QgnaMNB1l4jlaEEJY00vBL9CrnHd12zJJX6ILLmSlSbtAv4Yt4GvAdykW8AGvD2YCvMo5Gq8LWPzkyxZ_9SXFewg6A17roqdD9hl_h8fZJ8i4VMfNwaZ4Oo8OD08Rr4Y77GLCG222-IcP91W8mcBUVcBD0iE7qLc_IZTX6IXTU4Y35_USDdebYX3T3H77_GW9um0072hpRDcaOvLOEg1CE66NlUJ0lvZSur7no2Sd5W4UlPJla4klfKwtc8alc7rnl-j9SRtz8SobX8BsTQyhfkqxlrFW8gp9OEEPKT7OkIva-2xgmnSAOGfFekkFI0vSVvTjCTUp5pzAqYfk9zodFCXqGI46hqPO4VT83dk8j3uwf-E_afwrfXy1i3MKdRj_d_0GBFSXwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781620904</pqid></control><display><type>article</type><title>The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event</title><source>MEDLINE</source><source>ACS Publications</source><creator>Yang, Zhi-Yong ; Badalyan, Artavazd ; Hoffman, Brian M. ; Dean, Dennis R. ; Seefeldt, Lance C.</creator><creatorcontrib>Yang, Zhi-Yong ; Badalyan, Artavazd ; Hoffman, Brian M. ; Dean, Dennis R. ; Seefeldt, Lance C. ; Utah State Univ., Logan, UT (United States)</creatorcontrib><description>A central feature of the current understanding of dinitrogen (N2) reduction by the enzyme nitrogenase is the proposed coupling of the hydrolysis of two ATP, forming two ADP and two Pi, to the transfer of one electron from the Fe protein component to the MoFe protein component, where substrates are reduced. A redox-active [4Fe-4S] cluster associated with the Fe protein is the agent of electron delivery, and it is well known to have a capacity to cycle between a one-electron-reduced [4Fe-4S]1+ state and an oxidized [4Fe-4S]2+ state. Recently, however, it has been shown that certain reducing agents can be used to further reduce the Fe protein [4Fe-4S] cluster to a super-reduced, all-ferrous [4Fe-4S]0 state that can be either diamagnetic (S = 0) or paramagnetic (S = 4). It has been proposed that the super-reduced state might fundamentally alter the existing model for nitrogenase energy utilization by the transfer of two electrons per Fe protein cycle linked to hydrolysis of only two ATP molecules. Here, we measure the number of ATP consumed for each electron transfer under steady-state catalysis while the Fe protein cluster is in the [4Fe-4S]1+ state and when it is in the [4Fe-4S]0 state. Both oxidation states of the Fe protein are found to operate by hydrolyzing two ATP for each single-electron transfer event. Thus, regardless of its initial redox state, the Fe protein transfers only one electron at a time to the MoFe protein in a process that requires the hydrolysis of two ATP.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.2c09576</identifier><identifier>PMID: 36857604</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenosine Triphosphate - chemistry ; Catalysis ; Chemistry ; Electron Spin Resonance Spectroscopy ; Electrons ; Hydrolysis ; Iron - metabolism ; Molybdoferredoxin - chemistry ; Nitrogenase - chemistry ; Oxidation-Reduction</subject><ispartof>Journal of the American Chemical Society, 2023-03, Vol.145 (10), p.5637-5644</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-65bc1b35d0ae6a03acd8665d1788f773b825d3fb611394d0d03b0423238ffa73</citedby><cites>FETCH-LOGICAL-a351t-65bc1b35d0ae6a03acd8665d1788f773b825d3fb611394d0d03b0423238ffa73</cites><orcidid>0000-0001-8186-9450 ; 0000-0002-6933-6181 ; 0000-0002-6457-9504 ; 0000-0002-3100-0746 ; 0000-0001-8960-6196 ; 0000000264579504 ; 0000000189606196 ; 0000000231000746 ; 0000000181869450 ; 0000000269336181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.2c09576$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.2c09576$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36857604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2422483$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Zhi-Yong</creatorcontrib><creatorcontrib>Badalyan, Artavazd</creatorcontrib><creatorcontrib>Hoffman, Brian M.</creatorcontrib><creatorcontrib>Dean, Dennis R.</creatorcontrib><creatorcontrib>Seefeldt, Lance C.</creatorcontrib><creatorcontrib>Utah State Univ., Logan, UT (United States)</creatorcontrib><title>The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A central feature of the current understanding of dinitrogen (N2) reduction by the enzyme nitrogenase is the proposed coupling of the hydrolysis of two ATP, forming two ADP and two Pi, to the transfer of one electron from the Fe protein component to the MoFe protein component, where substrates are reduced. A redox-active [4Fe-4S] cluster associated with the Fe protein is the agent of electron delivery, and it is well known to have a capacity to cycle between a one-electron-reduced [4Fe-4S]1+ state and an oxidized [4Fe-4S]2+ state. Recently, however, it has been shown that certain reducing agents can be used to further reduce the Fe protein [4Fe-4S] cluster to a super-reduced, all-ferrous [4Fe-4S]0 state that can be either diamagnetic (S = 0) or paramagnetic (S = 4). It has been proposed that the super-reduced state might fundamentally alter the existing model for nitrogenase energy utilization by the transfer of two electrons per Fe protein cycle linked to hydrolysis of only two ATP molecules. Here, we measure the number of ATP consumed for each electron transfer under steady-state catalysis while the Fe protein cluster is in the [4Fe-4S]1+ state and when it is in the [4Fe-4S]0 state. Both oxidation states of the Fe protein are found to operate by hydrolyzing two ATP for each single-electron transfer event. Thus, regardless of its initial redox state, the Fe protein transfers only one electron at a time to the MoFe protein in a process that requires the hydrolysis of two ATP.</description><subject>Adenosine Triphosphate - chemistry</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Electrons</subject><subject>Hydrolysis</subject><subject>Iron - metabolism</subject><subject>Molybdoferredoxin - chemistry</subject><subject>Nitrogenase - chemistry</subject><subject>Oxidation-Reduction</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU-PEyEYh4nRuHX15tkQTx6clT8zDD02Tdc12ehG504YeNnSTGEXGDf9AH5vaVr14okAD8_L-_4QekvJFSWMftppk6-YIcuuF8_QgnaMNB1l4jlaEEJY00vBL9CrnHd12zJJX6ILLmSlSbtAv4Yt4GvAdykW8AGvD2YCvMo5Gq8LWPzkyxZ_9SXFewg6A17roqdD9hl_h8fZJ8i4VMfNwaZ4Oo8OD08Rr4Y77GLCG222-IcP91W8mcBUVcBD0iE7qLc_IZTX6IXTU4Y35_USDdebYX3T3H77_GW9um0072hpRDcaOvLOEg1CE66NlUJ0lvZSur7no2Sd5W4UlPJla4klfKwtc8alc7rnl-j9SRtz8SobX8BsTQyhfkqxlrFW8gp9OEEPKT7OkIva-2xgmnSAOGfFekkFI0vSVvTjCTUp5pzAqYfk9zodFCXqGI46hqPO4VT83dk8j3uwf-E_afwrfXy1i3MKdRj_d_0GBFSXwQ</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Yang, Zhi-Yong</creator><creator>Badalyan, Artavazd</creator><creator>Hoffman, Brian M.</creator><creator>Dean, Dennis R.</creator><creator>Seefeldt, Lance C.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8186-9450</orcidid><orcidid>https://orcid.org/0000-0002-6933-6181</orcidid><orcidid>https://orcid.org/0000-0002-6457-9504</orcidid><orcidid>https://orcid.org/0000-0002-3100-0746</orcidid><orcidid>https://orcid.org/0000-0001-8960-6196</orcidid><orcidid>https://orcid.org/0000000264579504</orcidid><orcidid>https://orcid.org/0000000189606196</orcidid><orcidid>https://orcid.org/0000000231000746</orcidid><orcidid>https://orcid.org/0000000181869450</orcidid><orcidid>https://orcid.org/0000000269336181</orcidid></search><sort><creationdate>20230315</creationdate><title>The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event</title><author>Yang, Zhi-Yong ; Badalyan, Artavazd ; Hoffman, Brian M. ; Dean, Dennis R. ; Seefeldt, Lance C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-65bc1b35d0ae6a03acd8665d1788f773b825d3fb611394d0d03b0423238ffa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenosine Triphosphate - chemistry</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Electrons</topic><topic>Hydrolysis</topic><topic>Iron - metabolism</topic><topic>Molybdoferredoxin - chemistry</topic><topic>Nitrogenase - chemistry</topic><topic>Oxidation-Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhi-Yong</creatorcontrib><creatorcontrib>Badalyan, Artavazd</creatorcontrib><creatorcontrib>Hoffman, Brian M.</creatorcontrib><creatorcontrib>Dean, Dennis R.</creatorcontrib><creatorcontrib>Seefeldt, Lance C.</creatorcontrib><creatorcontrib>Utah State Univ., Logan, UT (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhi-Yong</au><au>Badalyan, Artavazd</au><au>Hoffman, Brian M.</au><au>Dean, Dennis R.</au><au>Seefeldt, Lance C.</au><aucorp>Utah State Univ., Logan, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-03-15</date><risdate>2023</risdate><volume>145</volume><issue>10</issue><spage>5637</spage><epage>5644</epage><pages>5637-5644</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>A central feature of the current understanding of dinitrogen (N2) reduction by the enzyme nitrogenase is the proposed coupling of the hydrolysis of two ATP, forming two ADP and two Pi, to the transfer of one electron from the Fe protein component to the MoFe protein component, where substrates are reduced. A redox-active [4Fe-4S] cluster associated with the Fe protein is the agent of electron delivery, and it is well known to have a capacity to cycle between a one-electron-reduced [4Fe-4S]1+ state and an oxidized [4Fe-4S]2+ state. Recently, however, it has been shown that certain reducing agents can be used to further reduce the Fe protein [4Fe-4S] cluster to a super-reduced, all-ferrous [4Fe-4S]0 state that can be either diamagnetic (S = 0) or paramagnetic (S = 4). It has been proposed that the super-reduced state might fundamentally alter the existing model for nitrogenase energy utilization by the transfer of two electrons per Fe protein cycle linked to hydrolysis of only two ATP molecules. Here, we measure the number of ATP consumed for each electron transfer under steady-state catalysis while the Fe protein cluster is in the [4Fe-4S]1+ state and when it is in the [4Fe-4S]0 state. Both oxidation states of the Fe protein are found to operate by hydrolyzing two ATP for each single-electron transfer event. Thus, regardless of its initial redox state, the Fe protein transfers only one electron at a time to the MoFe protein in a process that requires the hydrolysis of two ATP.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36857604</pmid><doi>10.1021/jacs.2c09576</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8186-9450</orcidid><orcidid>https://orcid.org/0000-0002-6933-6181</orcidid><orcidid>https://orcid.org/0000-0002-6457-9504</orcidid><orcidid>https://orcid.org/0000-0002-3100-0746</orcidid><orcidid>https://orcid.org/0000-0001-8960-6196</orcidid><orcidid>https://orcid.org/0000000264579504</orcidid><orcidid>https://orcid.org/0000000189606196</orcidid><orcidid>https://orcid.org/0000000231000746</orcidid><orcidid>https://orcid.org/0000000181869450</orcidid><orcidid>https://orcid.org/0000000269336181</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-03, Vol.145 (10), p.5637-5644
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_2422483
source MEDLINE; ACS Publications
subjects Adenosine Triphosphate - chemistry
Catalysis
Chemistry
Electron Spin Resonance Spectroscopy
Electrons
Hydrolysis
Iron - metabolism
Molybdoferredoxin - chemistry
Nitrogenase - chemistry
Oxidation-Reduction
title The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Fe%20Protein%20Cycle%20Associated%20with%20Nitrogenase%20Catalysis%20Requires%20the%20Hydrolysis%20of%20Two%20ATP%20for%20Each%20Single%20Electron%20Transfer%20Event&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Yang,%20Zhi-Yong&rft.aucorp=Utah%20State%20Univ.,%20Logan,%20UT%20(United%20States)&rft.date=2023-03-15&rft.volume=145&rft.issue=10&rft.spage=5637&rft.epage=5644&rft.pages=5637-5644&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.2c09576&rft_dat=%3Cproquest_osti_%3E2781620904%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781620904&rft_id=info:pmid/36857604&rfr_iscdi=true