AutoMat: Automated materials discovery for electrochemical systems
Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently...
Gespeichert in:
Veröffentlicht in: | MRS bulletin 2022-10, Vol.47 (10), p.1036-1044 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1044 |
---|---|
container_issue | 10 |
container_start_page | 1036 |
container_title | MRS bulletin |
container_volume | 47 |
creator | Annevelink, Emil Kurchin, Rachel Muckley, Eric Kavalsky, Lance Hegde, Vinay I. Sulzer, Valentin Zhu, Shang Pu, Jiankun Farina, David Johnson, Matthew Gandhi, Dhairya Dave, Adarsh Lin, Hongyi Edelman, Alan Ramsundar, Bharath Saal, James Rackauckas, Christopher Shah, Viral Meredig, Bryce Viswanathan, Venkatasubramanian |
description | Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, mesoscale, and continuum simulations. We present an automated workflow, AutoMat, which accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions, such as machine learning surrogates or automated robotic experiments “in-the-loop.” The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned.
Graphical abstract |
doi_str_mv | 10.1557/s43577-022-00424-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2422340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771366858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-a53c81dedce230d1015aadaff0288eb6c5e6ece258c791754b0bb33db5919b7a3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhFcDb4GTvcCuIlFXGBs-U4G5qqiYvtIvXf4xAkblx2V9pvRqNB6JySKyqluo6CS6UwYQwTIpjA5ADNaMU1poLJQzQjWnOsykoco5MY14RQSZScodvFLvkXm26K8ehtgqYYZ-jsJhZNF53_grAvWh8K2IBLwbsV9J2zmyLuY4I-nqKjNsNw9rvn6P3h_u3uCS9fH5_vFkvsuCgTtpI7TRtoHDBOGpoTWNvYtiVMa6hLJ6GE_JPaqYoqKWpS15w3taxoVSvL5-hi8vUxdSa6LoFbOT8MOZVhgjEuSIYuJ2gb_OcOYjJrvwtDzmWYUpSXpZY6U2yiXPAxBmjNNnS9DXtDiRkLNVOhJhdqfgo1ozWfRDHDwweEP-t_VN8_aXj_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771366858</pqid></control><display><type>article</type><title>AutoMat: Automated materials discovery for electrochemical systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Annevelink, Emil ; Kurchin, Rachel ; Muckley, Eric ; Kavalsky, Lance ; Hegde, Vinay I. ; Sulzer, Valentin ; Zhu, Shang ; Pu, Jiankun ; Farina, David ; Johnson, Matthew ; Gandhi, Dhairya ; Dave, Adarsh ; Lin, Hongyi ; Edelman, Alan ; Ramsundar, Bharath ; Saal, James ; Rackauckas, Christopher ; Shah, Viral ; Meredig, Bryce ; Viswanathan, Venkatasubramanian</creator><creatorcontrib>Annevelink, Emil ; Kurchin, Rachel ; Muckley, Eric ; Kavalsky, Lance ; Hegde, Vinay I. ; Sulzer, Valentin ; Zhu, Shang ; Pu, Jiankun ; Farina, David ; Johnson, Matthew ; Gandhi, Dhairya ; Dave, Adarsh ; Lin, Hongyi ; Edelman, Alan ; Ramsundar, Bharath ; Saal, James ; Rackauckas, Christopher ; Shah, Viral ; Meredig, Bryce ; Viswanathan, Venkatasubramanian ; Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><description>Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, mesoscale, and continuum simulations. We present an automated workflow, AutoMat, which accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions, such as machine learning surrogates or automated robotic experiments “in-the-loop.” The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned.
Graphical abstract</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/s43577-022-00424-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Automation ; Characterization and Evaluation of Materials ; Chemical industry ; Chemistry and Materials Science ; Design optimization ; Electrification ; Energy Materials ; Energy storage ; First principles ; Machine learning ; Materials Engineering ; Materials Science ; Nanotechnology ; Physics ; Pipeline design ; Review Article ; Workflow</subject><ispartof>MRS bulletin, 2022-10, Vol.47 (10), p.1036-1044</ispartof><rights>The Author(s), under exclusive License to the Materials Research Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-a53c81dedce230d1015aadaff0288eb6c5e6ece258c791754b0bb33db5919b7a3</citedby><cites>FETCH-LOGICAL-c346t-a53c81dedce230d1015aadaff0288eb6c5e6ece258c791754b0bb33db5919b7a3</cites><orcidid>0000-0003-1060-5495 ; 0000000310605495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43577-022-00424-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43577-022-00424-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2422340$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Annevelink, Emil</creatorcontrib><creatorcontrib>Kurchin, Rachel</creatorcontrib><creatorcontrib>Muckley, Eric</creatorcontrib><creatorcontrib>Kavalsky, Lance</creatorcontrib><creatorcontrib>Hegde, Vinay I.</creatorcontrib><creatorcontrib>Sulzer, Valentin</creatorcontrib><creatorcontrib>Zhu, Shang</creatorcontrib><creatorcontrib>Pu, Jiankun</creatorcontrib><creatorcontrib>Farina, David</creatorcontrib><creatorcontrib>Johnson, Matthew</creatorcontrib><creatorcontrib>Gandhi, Dhairya</creatorcontrib><creatorcontrib>Dave, Adarsh</creatorcontrib><creatorcontrib>Lin, Hongyi</creatorcontrib><creatorcontrib>Edelman, Alan</creatorcontrib><creatorcontrib>Ramsundar, Bharath</creatorcontrib><creatorcontrib>Saal, James</creatorcontrib><creatorcontrib>Rackauckas, Christopher</creatorcontrib><creatorcontrib>Shah, Viral</creatorcontrib><creatorcontrib>Meredig, Bryce</creatorcontrib><creatorcontrib>Viswanathan, Venkatasubramanian</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><title>AutoMat: Automated materials discovery for electrochemical systems</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><description>Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, mesoscale, and continuum simulations. We present an automated workflow, AutoMat, which accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions, such as machine learning surrogates or automated robotic experiments “in-the-loop.” The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned.
Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Automation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical industry</subject><subject>Chemistry and Materials Science</subject><subject>Design optimization</subject><subject>Electrification</subject><subject>Energy Materials</subject><subject>Energy storage</subject><subject>First principles</subject><subject>Machine learning</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Pipeline design</subject><subject>Review Article</subject><subject>Workflow</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhFcDb4GTvcCuIlFXGBs-U4G5qqiYvtIvXf4xAkblx2V9pvRqNB6JySKyqluo6CS6UwYQwTIpjA5ADNaMU1poLJQzQjWnOsykoco5MY14RQSZScodvFLvkXm26K8ehtgqYYZ-jsJhZNF53_grAvWh8K2IBLwbsV9J2zmyLuY4I-nqKjNsNw9rvn6P3h_u3uCS9fH5_vFkvsuCgTtpI7TRtoHDBOGpoTWNvYtiVMa6hLJ6GE_JPaqYoqKWpS15w3taxoVSvL5-hi8vUxdSa6LoFbOT8MOZVhgjEuSIYuJ2gb_OcOYjJrvwtDzmWYUpSXpZY6U2yiXPAxBmjNNnS9DXtDiRkLNVOhJhdqfgo1ozWfRDHDwweEP-t_VN8_aXj_</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Annevelink, Emil</creator><creator>Kurchin, Rachel</creator><creator>Muckley, Eric</creator><creator>Kavalsky, Lance</creator><creator>Hegde, Vinay I.</creator><creator>Sulzer, Valentin</creator><creator>Zhu, Shang</creator><creator>Pu, Jiankun</creator><creator>Farina, David</creator><creator>Johnson, Matthew</creator><creator>Gandhi, Dhairya</creator><creator>Dave, Adarsh</creator><creator>Lin, Hongyi</creator><creator>Edelman, Alan</creator><creator>Ramsundar, Bharath</creator><creator>Saal, James</creator><creator>Rackauckas, Christopher</creator><creator>Shah, Viral</creator><creator>Meredig, Bryce</creator><creator>Viswanathan, Venkatasubramanian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Materials Research Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1060-5495</orcidid><orcidid>https://orcid.org/0000000310605495</orcidid></search><sort><creationdate>20221001</creationdate><title>AutoMat: Automated materials discovery for electrochemical systems</title><author>Annevelink, Emil ; Kurchin, Rachel ; Muckley, Eric ; Kavalsky, Lance ; Hegde, Vinay I. ; Sulzer, Valentin ; Zhu, Shang ; Pu, Jiankun ; Farina, David ; Johnson, Matthew ; Gandhi, Dhairya ; Dave, Adarsh ; Lin, Hongyi ; Edelman, Alan ; Ramsundar, Bharath ; Saal, James ; Rackauckas, Christopher ; Shah, Viral ; Meredig, Bryce ; Viswanathan, Venkatasubramanian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-a53c81dedce230d1015aadaff0288eb6c5e6ece258c791754b0bb33db5919b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Automation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical industry</topic><topic>Chemistry and Materials Science</topic><topic>Design optimization</topic><topic>Electrification</topic><topic>Energy Materials</topic><topic>Energy storage</topic><topic>First principles</topic><topic>Machine learning</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Pipeline design</topic><topic>Review Article</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Annevelink, Emil</creatorcontrib><creatorcontrib>Kurchin, Rachel</creatorcontrib><creatorcontrib>Muckley, Eric</creatorcontrib><creatorcontrib>Kavalsky, Lance</creatorcontrib><creatorcontrib>Hegde, Vinay I.</creatorcontrib><creatorcontrib>Sulzer, Valentin</creatorcontrib><creatorcontrib>Zhu, Shang</creatorcontrib><creatorcontrib>Pu, Jiankun</creatorcontrib><creatorcontrib>Farina, David</creatorcontrib><creatorcontrib>Johnson, Matthew</creatorcontrib><creatorcontrib>Gandhi, Dhairya</creatorcontrib><creatorcontrib>Dave, Adarsh</creatorcontrib><creatorcontrib>Lin, Hongyi</creatorcontrib><creatorcontrib>Edelman, Alan</creatorcontrib><creatorcontrib>Ramsundar, Bharath</creatorcontrib><creatorcontrib>Saal, James</creatorcontrib><creatorcontrib>Rackauckas, Christopher</creatorcontrib><creatorcontrib>Shah, Viral</creatorcontrib><creatorcontrib>Meredig, Bryce</creatorcontrib><creatorcontrib>Viswanathan, Venkatasubramanian</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annevelink, Emil</au><au>Kurchin, Rachel</au><au>Muckley, Eric</au><au>Kavalsky, Lance</au><au>Hegde, Vinay I.</au><au>Sulzer, Valentin</au><au>Zhu, Shang</au><au>Pu, Jiankun</au><au>Farina, David</au><au>Johnson, Matthew</au><au>Gandhi, Dhairya</au><au>Dave, Adarsh</au><au>Lin, Hongyi</au><au>Edelman, Alan</au><au>Ramsundar, Bharath</au><au>Saal, James</au><au>Rackauckas, Christopher</au><au>Shah, Viral</au><au>Meredig, Bryce</au><au>Viswanathan, Venkatasubramanian</au><aucorp>Carnegie Mellon Univ., Pittsburgh, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AutoMat: Automated materials discovery for electrochemical systems</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>47</volume><issue>10</issue><spage>1036</spage><epage>1044</epage><pages>1036-1044</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, mesoscale, and continuum simulations. We present an automated workflow, AutoMat, which accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions, such as machine learning surrogates or automated robotic experiments “in-the-loop.” The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43577-022-00424-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1060-5495</orcidid><orcidid>https://orcid.org/0000000310605495</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7694 |
ispartof | MRS bulletin, 2022-10, Vol.47 (10), p.1036-1044 |
issn | 0883-7694 1938-1425 |
language | eng |
recordid | cdi_osti_scitechconnect_2422340 |
source | Springer Nature - Complete Springer Journals |
subjects | Applied and Technical Physics Automation Characterization and Evaluation of Materials Chemical industry Chemistry and Materials Science Design optimization Electrification Energy Materials Energy storage First principles Machine learning Materials Engineering Materials Science Nanotechnology Physics Pipeline design Review Article Workflow |
title | AutoMat: Automated materials discovery for electrochemical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AutoMat:%20Automated%20materials%20discovery%20for%20electrochemical%20systems&rft.jtitle=MRS%20bulletin&rft.au=Annevelink,%20Emil&rft.aucorp=Carnegie%20Mellon%20Univ.,%20Pittsburgh,%20PA%20(United%20States)&rft.date=2022-10-01&rft.volume=47&rft.issue=10&rft.spage=1036&rft.epage=1044&rft.pages=1036-1044&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/s43577-022-00424-0&rft_dat=%3Cproquest_osti_%3E2771366858%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771366858&rft_id=info:pmid/&rfr_iscdi=true |