AutoMat: Automated materials discovery for electrochemical systems

Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2022-10, Vol.47 (10), p.1036-1044
Hauptverfasser: Annevelink, Emil, Kurchin, Rachel, Muckley, Eric, Kavalsky, Lance, Hegde, Vinay I., Sulzer, Valentin, Zhu, Shang, Pu, Jiankun, Farina, David, Johnson, Matthew, Gandhi, Dhairya, Dave, Adarsh, Lin, Hongyi, Edelman, Alan, Ramsundar, Bharath, Saal, James, Rackauckas, Christopher, Shah, Viral, Meredig, Bryce, Viswanathan, Venkatasubramanian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue 10
container_start_page 1036
container_title MRS bulletin
container_volume 47
creator Annevelink, Emil
Kurchin, Rachel
Muckley, Eric
Kavalsky, Lance
Hegde, Vinay I.
Sulzer, Valentin
Zhu, Shang
Pu, Jiankun
Farina, David
Johnson, Matthew
Gandhi, Dhairya
Dave, Adarsh
Lin, Hongyi
Edelman, Alan
Ramsundar, Bharath
Saal, James
Rackauckas, Christopher
Shah, Viral
Meredig, Bryce
Viswanathan, Venkatasubramanian
description Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, mesoscale, and continuum simulations. We present an automated workflow, AutoMat, which accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions, such as machine learning surrogates or automated robotic experiments “in-the-loop.” The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned. Graphical abstract
doi_str_mv 10.1557/s43577-022-00424-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2422340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771366858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-a53c81dedce230d1015aadaff0288eb6c5e6ece258c791754b0bb33db5919b7a3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhFcDb4GTvcCuIlFXGBs-U4G5qqiYvtIvXf4xAkblx2V9pvRqNB6JySKyqluo6CS6UwYQwTIpjA5ADNaMU1poLJQzQjWnOsykoco5MY14RQSZScodvFLvkXm26K8ehtgqYYZ-jsJhZNF53_grAvWh8K2IBLwbsV9J2zmyLuY4I-nqKjNsNw9rvn6P3h_u3uCS9fH5_vFkvsuCgTtpI7TRtoHDBOGpoTWNvYtiVMa6hLJ6GE_JPaqYoqKWpS15w3taxoVSvL5-hi8vUxdSa6LoFbOT8MOZVhgjEuSIYuJ2gb_OcOYjJrvwtDzmWYUpSXpZY6U2yiXPAxBmjNNnS9DXtDiRkLNVOhJhdqfgo1ozWfRDHDwweEP-t_VN8_aXj_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771366858</pqid></control><display><type>article</type><title>AutoMat: Automated materials discovery for electrochemical systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Annevelink, Emil ; Kurchin, Rachel ; Muckley, Eric ; Kavalsky, Lance ; Hegde, Vinay I. ; Sulzer, Valentin ; Zhu, Shang ; Pu, Jiankun ; Farina, David ; Johnson, Matthew ; Gandhi, Dhairya ; Dave, Adarsh ; Lin, Hongyi ; Edelman, Alan ; Ramsundar, Bharath ; Saal, James ; Rackauckas, Christopher ; Shah, Viral ; Meredig, Bryce ; Viswanathan, Venkatasubramanian</creator><creatorcontrib>Annevelink, Emil ; Kurchin, Rachel ; Muckley, Eric ; Kavalsky, Lance ; Hegde, Vinay I. ; Sulzer, Valentin ; Zhu, Shang ; Pu, Jiankun ; Farina, David ; Johnson, Matthew ; Gandhi, Dhairya ; Dave, Adarsh ; Lin, Hongyi ; Edelman, Alan ; Ramsundar, Bharath ; Saal, James ; Rackauckas, Christopher ; Shah, Viral ; Meredig, Bryce ; Viswanathan, Venkatasubramanian ; Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><description>Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, mesoscale, and continuum simulations. We present an automated workflow, AutoMat, which accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions, such as machine learning surrogates or automated robotic experiments “in-the-loop.” The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned. Graphical abstract</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/s43577-022-00424-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Automation ; Characterization and Evaluation of Materials ; Chemical industry ; Chemistry and Materials Science ; Design optimization ; Electrification ; Energy Materials ; Energy storage ; First principles ; Machine learning ; Materials Engineering ; Materials Science ; Nanotechnology ; Physics ; Pipeline design ; Review Article ; Workflow</subject><ispartof>MRS bulletin, 2022-10, Vol.47 (10), p.1036-1044</ispartof><rights>The Author(s), under exclusive License to the Materials Research Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-a53c81dedce230d1015aadaff0288eb6c5e6ece258c791754b0bb33db5919b7a3</citedby><cites>FETCH-LOGICAL-c346t-a53c81dedce230d1015aadaff0288eb6c5e6ece258c791754b0bb33db5919b7a3</cites><orcidid>0000-0003-1060-5495 ; 0000000310605495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43577-022-00424-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43577-022-00424-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2422340$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Annevelink, Emil</creatorcontrib><creatorcontrib>Kurchin, Rachel</creatorcontrib><creatorcontrib>Muckley, Eric</creatorcontrib><creatorcontrib>Kavalsky, Lance</creatorcontrib><creatorcontrib>Hegde, Vinay I.</creatorcontrib><creatorcontrib>Sulzer, Valentin</creatorcontrib><creatorcontrib>Zhu, Shang</creatorcontrib><creatorcontrib>Pu, Jiankun</creatorcontrib><creatorcontrib>Farina, David</creatorcontrib><creatorcontrib>Johnson, Matthew</creatorcontrib><creatorcontrib>Gandhi, Dhairya</creatorcontrib><creatorcontrib>Dave, Adarsh</creatorcontrib><creatorcontrib>Lin, Hongyi</creatorcontrib><creatorcontrib>Edelman, Alan</creatorcontrib><creatorcontrib>Ramsundar, Bharath</creatorcontrib><creatorcontrib>Saal, James</creatorcontrib><creatorcontrib>Rackauckas, Christopher</creatorcontrib><creatorcontrib>Shah, Viral</creatorcontrib><creatorcontrib>Meredig, Bryce</creatorcontrib><creatorcontrib>Viswanathan, Venkatasubramanian</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><title>AutoMat: Automated materials discovery for electrochemical systems</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><description>Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, mesoscale, and continuum simulations. We present an automated workflow, AutoMat, which accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions, such as machine learning surrogates or automated robotic experiments “in-the-loop.” The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Automation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical industry</subject><subject>Chemistry and Materials Science</subject><subject>Design optimization</subject><subject>Electrification</subject><subject>Energy Materials</subject><subject>Energy storage</subject><subject>First principles</subject><subject>Machine learning</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Pipeline design</subject><subject>Review Article</subject><subject>Workflow</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhFcDb4GTvcCuIlFXGBs-U4G5qqiYvtIvXf4xAkblx2V9pvRqNB6JySKyqluo6CS6UwYQwTIpjA5ADNaMU1poLJQzQjWnOsykoco5MY14RQSZScodvFLvkXm26K8ehtgqYYZ-jsJhZNF53_grAvWh8K2IBLwbsV9J2zmyLuY4I-nqKjNsNw9rvn6P3h_u3uCS9fH5_vFkvsuCgTtpI7TRtoHDBOGpoTWNvYtiVMa6hLJ6GE_JPaqYoqKWpS15w3taxoVSvL5-hi8vUxdSa6LoFbOT8MOZVhgjEuSIYuJ2gb_OcOYjJrvwtDzmWYUpSXpZY6U2yiXPAxBmjNNnS9DXtDiRkLNVOhJhdqfgo1ozWfRDHDwweEP-t_VN8_aXj_</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Annevelink, Emil</creator><creator>Kurchin, Rachel</creator><creator>Muckley, Eric</creator><creator>Kavalsky, Lance</creator><creator>Hegde, Vinay I.</creator><creator>Sulzer, Valentin</creator><creator>Zhu, Shang</creator><creator>Pu, Jiankun</creator><creator>Farina, David</creator><creator>Johnson, Matthew</creator><creator>Gandhi, Dhairya</creator><creator>Dave, Adarsh</creator><creator>Lin, Hongyi</creator><creator>Edelman, Alan</creator><creator>Ramsundar, Bharath</creator><creator>Saal, James</creator><creator>Rackauckas, Christopher</creator><creator>Shah, Viral</creator><creator>Meredig, Bryce</creator><creator>Viswanathan, Venkatasubramanian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Materials Research Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1060-5495</orcidid><orcidid>https://orcid.org/0000000310605495</orcidid></search><sort><creationdate>20221001</creationdate><title>AutoMat: Automated materials discovery for electrochemical systems</title><author>Annevelink, Emil ; Kurchin, Rachel ; Muckley, Eric ; Kavalsky, Lance ; Hegde, Vinay I. ; Sulzer, Valentin ; Zhu, Shang ; Pu, Jiankun ; Farina, David ; Johnson, Matthew ; Gandhi, Dhairya ; Dave, Adarsh ; Lin, Hongyi ; Edelman, Alan ; Ramsundar, Bharath ; Saal, James ; Rackauckas, Christopher ; Shah, Viral ; Meredig, Bryce ; Viswanathan, Venkatasubramanian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-a53c81dedce230d1015aadaff0288eb6c5e6ece258c791754b0bb33db5919b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Automation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical industry</topic><topic>Chemistry and Materials Science</topic><topic>Design optimization</topic><topic>Electrification</topic><topic>Energy Materials</topic><topic>Energy storage</topic><topic>First principles</topic><topic>Machine learning</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Pipeline design</topic><topic>Review Article</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Annevelink, Emil</creatorcontrib><creatorcontrib>Kurchin, Rachel</creatorcontrib><creatorcontrib>Muckley, Eric</creatorcontrib><creatorcontrib>Kavalsky, Lance</creatorcontrib><creatorcontrib>Hegde, Vinay I.</creatorcontrib><creatorcontrib>Sulzer, Valentin</creatorcontrib><creatorcontrib>Zhu, Shang</creatorcontrib><creatorcontrib>Pu, Jiankun</creatorcontrib><creatorcontrib>Farina, David</creatorcontrib><creatorcontrib>Johnson, Matthew</creatorcontrib><creatorcontrib>Gandhi, Dhairya</creatorcontrib><creatorcontrib>Dave, Adarsh</creatorcontrib><creatorcontrib>Lin, Hongyi</creatorcontrib><creatorcontrib>Edelman, Alan</creatorcontrib><creatorcontrib>Ramsundar, Bharath</creatorcontrib><creatorcontrib>Saal, James</creatorcontrib><creatorcontrib>Rackauckas, Christopher</creatorcontrib><creatorcontrib>Shah, Viral</creatorcontrib><creatorcontrib>Meredig, Bryce</creatorcontrib><creatorcontrib>Viswanathan, Venkatasubramanian</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annevelink, Emil</au><au>Kurchin, Rachel</au><au>Muckley, Eric</au><au>Kavalsky, Lance</au><au>Hegde, Vinay I.</au><au>Sulzer, Valentin</au><au>Zhu, Shang</au><au>Pu, Jiankun</au><au>Farina, David</au><au>Johnson, Matthew</au><au>Gandhi, Dhairya</au><au>Dave, Adarsh</au><au>Lin, Hongyi</au><au>Edelman, Alan</au><au>Ramsundar, Bharath</au><au>Saal, James</au><au>Rackauckas, Christopher</au><au>Shah, Viral</au><au>Meredig, Bryce</au><au>Viswanathan, Venkatasubramanian</au><aucorp>Carnegie Mellon Univ., Pittsburgh, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AutoMat: Automated materials discovery for electrochemical systems</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>47</volume><issue>10</issue><spage>1036</spage><epage>1044</epage><pages>1036-1044</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, mesoscale, and continuum simulations. We present an automated workflow, AutoMat, which accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions, such as machine learning surrogates or automated robotic experiments “in-the-loop.” The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43577-022-00424-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1060-5495</orcidid><orcidid>https://orcid.org/0000000310605495</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2022-10, Vol.47 (10), p.1036-1044
issn 0883-7694
1938-1425
language eng
recordid cdi_osti_scitechconnect_2422340
source Springer Nature - Complete Springer Journals
subjects Applied and Technical Physics
Automation
Characterization and Evaluation of Materials
Chemical industry
Chemistry and Materials Science
Design optimization
Electrification
Energy Materials
Energy storage
First principles
Machine learning
Materials Engineering
Materials Science
Nanotechnology
Physics
Pipeline design
Review Article
Workflow
title AutoMat: Automated materials discovery for electrochemical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AutoMat:%20Automated%20materials%20discovery%20for%20electrochemical%20systems&rft.jtitle=MRS%20bulletin&rft.au=Annevelink,%20Emil&rft.aucorp=Carnegie%20Mellon%20Univ.,%20Pittsburgh,%20PA%20(United%20States)&rft.date=2022-10-01&rft.volume=47&rft.issue=10&rft.spage=1036&rft.epage=1044&rft.pages=1036-1044&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/s43577-022-00424-0&rft_dat=%3Cproquest_osti_%3E2771366858%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771366858&rft_id=info:pmid/&rfr_iscdi=true