Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite
Medium-voltage silicon carbide (SiC) power modules are a critical component in grid-bound power conversion systems, and the packaging of these modules dictates the performance and reliability of the systems. One of the key issues for packaging the modules is managing the tradeoff between heat dissip...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2022-12, Vol.37 (12), p.14462-14470 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14470 |
---|---|
container_issue | 12 |
container_start_page | 14462 |
container_title | IEEE transactions on power electronics |
container_volume | 37 |
creator | Zhang, Zichen Lu, Shengchang Wang, Boyan Zhang, Yuhao Yun, Nick Sung, Woongje Ngo, Khai D. T. Lu, Guo-Quan |
description | Medium-voltage silicon carbide (SiC) power modules are a critical component in grid-bound power conversion systems, and the packaging of these modules dictates the performance and reliability of the systems. One of the key issues for packaging the modules is managing the tradeoff between heat dissipation and insulation. To improve thermal performance without sacrificing insulation, a 10-kV SiC full-wave diode rectifier was designed and fabricated by incorporating double-sided cooling and wirebond-less interconnection and by utilizing thin alumina direct-bond copper substrates. To ensure that the substrates met insulation requirement, triple points on the substrates were coated by a nonlinear resistive polymer-nanoparticle composite to reduce electric field concentration. The nonlinear resistive coating increased the partial discharge inception voltage of the substrate with 0.5-mm thick alumina to 17.3 kV, an 84% improvement over that of the substrate without the coating. Electrical and thermal simulations of the module showed a low power loop inductance of 3.51 nH and a low junction-to-case thermal resistance of 0.114°C/W. The feasibility of the packaging techniques was demonstrated from successful fabrication and functional testing of the packagedmodule. |
doi_str_mv | 10.1109/TPEL.2022.3190303 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_2422281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9827612</ieee_id><sourcerecordid>2709157877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-9dc79d726398f1a6bc64b67876bb4848c3a3e035ab2ba76598f693f6fe8f1a643</originalsourceid><addsrcrecordid>eNo9kd1uEzEQhS0EEqHwAIgbC6439c_u2r5EaYFKoUQkwKVle2cbt5t1anuR8iY8Ll5ScTMjjb4zZ0YHobeULCkl6nK3uV4vGWFsyakinPBnaEFVTStCiXiOFkTKppJK8ZfoVUr3hNC6IXSB_myMezB3frzDoccGU1I9_MRXYbIDVFvfAV6FMECHt37wLox4ZaKdx1c-lPo1dNMA-JfPe7zb-xFvJ5tyNBlSEZbWYXsqa2_DOPgRTMTfIfmU_W_AmzCcDhCrWzOGo4nZu2F2OxxD8hleoxe9GRK8eeoX6Men693qS7X-9vlm9XFdOc5IrlTnhOoEa7mSPTWtdW1tWyFFa20ta-m44UB4YyyzRrRNoVrF-7aHf3jNL9D7895QrtLJFWu3L4-O4LJmNWNM0gJ9OEPHGB4nSFnfhymO5S7NBFG0KYaiUPRMuRhSitDrY_QHE0-aEj2npOeU9JySfkqpaN6dNR4A_vNKMtFSxv8Ci-2N9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709157877</pqid></control><display><type>article</type><title>Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Zichen ; Lu, Shengchang ; Wang, Boyan ; Zhang, Yuhao ; Yun, Nick ; Sung, Woongje ; Ngo, Khai D. T. ; Lu, Guo-Quan</creator><creatorcontrib>Zhang, Zichen ; Lu, Shengchang ; Wang, Boyan ; Zhang, Yuhao ; Yun, Nick ; Sung, Woongje ; Ngo, Khai D. T. ; Lu, Guo-Quan ; Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><description>Medium-voltage silicon carbide (SiC) power modules are a critical component in grid-bound power conversion systems, and the packaging of these modules dictates the performance and reliability of the systems. One of the key issues for packaging the modules is managing the tradeoff between heat dissipation and insulation. To improve thermal performance without sacrificing insulation, a 10-kV SiC full-wave diode rectifier was designed and fabricated by incorporating double-sided cooling and wirebond-less interconnection and by utilizing thin alumina direct-bond copper substrates. To ensure that the substrates met insulation requirement, triple points on the substrates were coated by a nonlinear resistive polymer-nanoparticle composite to reduce electric field concentration. The nonlinear resistive coating increased the partial discharge inception voltage of the substrate with 0.5-mm thick alumina to 17.3 kV, an 84% improvement over that of the substrate without the coating. Electrical and thermal simulations of the module showed a low power loop inductance of 3.51 nH and a low junction-to-case thermal resistance of 0.114°C/W. The feasibility of the packaging techniques was demonstrated from successful fabrication and functional testing of the packagedmodule.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3190303</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum oxide ; Coatings ; Cooling ; Critical components ; Diode rectifiers ; Electric fields ; Electric potential ; Electronic packaging thermal management ; Energy conversion ; Engineering ; Functional testing ; Inductance ; Insulation ; Module thermal management and insulation ; Modules ; Nanoparticles ; nonlinear resistive field grading ; Packaging ; packaging of medium-voltage (MV) SiC power module ; Partial discharges ; polymer-nanoparticle composite ; Polymers ; Resistance ; Silicon carbide ; Substrates ; Thermal resistance ; Thermal simulation ; Voltage</subject><ispartof>IEEE transactions on power electronics, 2022-12, Vol.37 (12), p.14462-14470</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-9dc79d726398f1a6bc64b67876bb4848c3a3e035ab2ba76598f693f6fe8f1a643</citedby><cites>FETCH-LOGICAL-c320t-9dc79d726398f1a6bc64b67876bb4848c3a3e035ab2ba76598f693f6fe8f1a643</cites><orcidid>0000-0001-7639-274X ; 0000-0002-0326-3055 ; 0000-0002-3813-0797 ; 0000-0001-9986-835X ; 0000-0003-3079-8589 ; 0000-0001-6350-4861 ; 0000000203263055 ; 0000000238130797 ; 0000000163504861 ; 000000019986835X ; 0000000330798589 ; 000000017639274X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9827612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9827612$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/2422281$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Lu, Shengchang</creatorcontrib><creatorcontrib>Wang, Boyan</creatorcontrib><creatorcontrib>Zhang, Yuhao</creatorcontrib><creatorcontrib>Yun, Nick</creatorcontrib><creatorcontrib>Sung, Woongje</creatorcontrib><creatorcontrib>Ngo, Khai D. T.</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><title>Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Medium-voltage silicon carbide (SiC) power modules are a critical component in grid-bound power conversion systems, and the packaging of these modules dictates the performance and reliability of the systems. One of the key issues for packaging the modules is managing the tradeoff between heat dissipation and insulation. To improve thermal performance without sacrificing insulation, a 10-kV SiC full-wave diode rectifier was designed and fabricated by incorporating double-sided cooling and wirebond-less interconnection and by utilizing thin alumina direct-bond copper substrates. To ensure that the substrates met insulation requirement, triple points on the substrates were coated by a nonlinear resistive polymer-nanoparticle composite to reduce electric field concentration. The nonlinear resistive coating increased the partial discharge inception voltage of the substrate with 0.5-mm thick alumina to 17.3 kV, an 84% improvement over that of the substrate without the coating. Electrical and thermal simulations of the module showed a low power loop inductance of 3.51 nH and a low junction-to-case thermal resistance of 0.114°C/W. The feasibility of the packaging techniques was demonstrated from successful fabrication and functional testing of the packagedmodule.</description><subject>Aluminum oxide</subject><subject>Coatings</subject><subject>Cooling</subject><subject>Critical components</subject><subject>Diode rectifiers</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electronic packaging thermal management</subject><subject>Energy conversion</subject><subject>Engineering</subject><subject>Functional testing</subject><subject>Inductance</subject><subject>Insulation</subject><subject>Module thermal management and insulation</subject><subject>Modules</subject><subject>Nanoparticles</subject><subject>nonlinear resistive field grading</subject><subject>Packaging</subject><subject>packaging of medium-voltage (MV) SiC power module</subject><subject>Partial discharges</subject><subject>polymer-nanoparticle composite</subject><subject>Polymers</subject><subject>Resistance</subject><subject>Silicon carbide</subject><subject>Substrates</subject><subject>Thermal resistance</subject><subject>Thermal simulation</subject><subject>Voltage</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kd1uEzEQhS0EEqHwAIgbC6439c_u2r5EaYFKoUQkwKVle2cbt5t1anuR8iY8Ll5ScTMjjb4zZ0YHobeULCkl6nK3uV4vGWFsyakinPBnaEFVTStCiXiOFkTKppJK8ZfoVUr3hNC6IXSB_myMezB3frzDoccGU1I9_MRXYbIDVFvfAV6FMECHt37wLox4ZaKdx1c-lPo1dNMA-JfPe7zb-xFvJ5tyNBlSEZbWYXsqa2_DOPgRTMTfIfmU_W_AmzCcDhCrWzOGo4nZu2F2OxxD8hleoxe9GRK8eeoX6Men693qS7X-9vlm9XFdOc5IrlTnhOoEa7mSPTWtdW1tWyFFa20ta-m44UB4YyyzRrRNoVrF-7aHf3jNL9D7895QrtLJFWu3L4-O4LJmNWNM0gJ9OEPHGB4nSFnfhymO5S7NBFG0KYaiUPRMuRhSitDrY_QHE0-aEj2npOeU9JySfkqpaN6dNR4A_vNKMtFSxv8Ci-2N9w</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhang, Zichen</creator><creator>Lu, Shengchang</creator><creator>Wang, Boyan</creator><creator>Zhang, Yuhao</creator><creator>Yun, Nick</creator><creator>Sung, Woongje</creator><creator>Ngo, Khai D. T.</creator><creator>Lu, Guo-Quan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7639-274X</orcidid><orcidid>https://orcid.org/0000-0002-0326-3055</orcidid><orcidid>https://orcid.org/0000-0002-3813-0797</orcidid><orcidid>https://orcid.org/0000-0001-9986-835X</orcidid><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid><orcidid>https://orcid.org/0000-0001-6350-4861</orcidid><orcidid>https://orcid.org/0000000203263055</orcidid><orcidid>https://orcid.org/0000000238130797</orcidid><orcidid>https://orcid.org/0000000163504861</orcidid><orcidid>https://orcid.org/000000019986835X</orcidid><orcidid>https://orcid.org/0000000330798589</orcidid><orcidid>https://orcid.org/000000017639274X</orcidid></search><sort><creationdate>20221201</creationdate><title>Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite</title><author>Zhang, Zichen ; Lu, Shengchang ; Wang, Boyan ; Zhang, Yuhao ; Yun, Nick ; Sung, Woongje ; Ngo, Khai D. T. ; Lu, Guo-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-9dc79d726398f1a6bc64b67876bb4848c3a3e035ab2ba76598f693f6fe8f1a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Coatings</topic><topic>Cooling</topic><topic>Critical components</topic><topic>Diode rectifiers</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electronic packaging thermal management</topic><topic>Energy conversion</topic><topic>Engineering</topic><topic>Functional testing</topic><topic>Inductance</topic><topic>Insulation</topic><topic>Module thermal management and insulation</topic><topic>Modules</topic><topic>Nanoparticles</topic><topic>nonlinear resistive field grading</topic><topic>Packaging</topic><topic>packaging of medium-voltage (MV) SiC power module</topic><topic>Partial discharges</topic><topic>polymer-nanoparticle composite</topic><topic>Polymers</topic><topic>Resistance</topic><topic>Silicon carbide</topic><topic>Substrates</topic><topic>Thermal resistance</topic><topic>Thermal simulation</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Lu, Shengchang</creatorcontrib><creatorcontrib>Wang, Boyan</creatorcontrib><creatorcontrib>Zhang, Yuhao</creatorcontrib><creatorcontrib>Yun, Nick</creatorcontrib><creatorcontrib>Sung, Woongje</creatorcontrib><creatorcontrib>Ngo, Khai D. T.</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Zichen</au><au>Lu, Shengchang</au><au>Wang, Boyan</au><au>Zhang, Yuhao</au><au>Yun, Nick</au><au>Sung, Woongje</au><au>Ngo, Khai D. T.</au><au>Lu, Guo-Quan</au><aucorp>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>37</volume><issue>12</issue><spage>14462</spage><epage>14470</epage><pages>14462-14470</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Medium-voltage silicon carbide (SiC) power modules are a critical component in grid-bound power conversion systems, and the packaging of these modules dictates the performance and reliability of the systems. One of the key issues for packaging the modules is managing the tradeoff between heat dissipation and insulation. To improve thermal performance without sacrificing insulation, a 10-kV SiC full-wave diode rectifier was designed and fabricated by incorporating double-sided cooling and wirebond-less interconnection and by utilizing thin alumina direct-bond copper substrates. To ensure that the substrates met insulation requirement, triple points on the substrates were coated by a nonlinear resistive polymer-nanoparticle composite to reduce electric field concentration. The nonlinear resistive coating increased the partial discharge inception voltage of the substrate with 0.5-mm thick alumina to 17.3 kV, an 84% improvement over that of the substrate without the coating. Electrical and thermal simulations of the module showed a low power loop inductance of 3.51 nH and a low junction-to-case thermal resistance of 0.114°C/W. The feasibility of the packaging techniques was demonstrated from successful fabrication and functional testing of the packagedmodule.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3190303</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7639-274X</orcidid><orcidid>https://orcid.org/0000-0002-0326-3055</orcidid><orcidid>https://orcid.org/0000-0002-3813-0797</orcidid><orcidid>https://orcid.org/0000-0001-9986-835X</orcidid><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid><orcidid>https://orcid.org/0000-0001-6350-4861</orcidid><orcidid>https://orcid.org/0000000203263055</orcidid><orcidid>https://orcid.org/0000000238130797</orcidid><orcidid>https://orcid.org/0000000163504861</orcidid><orcidid>https://orcid.org/000000019986835X</orcidid><orcidid>https://orcid.org/0000000330798589</orcidid><orcidid>https://orcid.org/000000017639274X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2022-12, Vol.37 (12), p.14462-14470 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_osti_scitechconnect_2422281 |
source | IEEE Electronic Library (IEL) |
subjects | Aluminum oxide Coatings Cooling Critical components Diode rectifiers Electric fields Electric potential Electronic packaging thermal management Energy conversion Engineering Functional testing Inductance Insulation Module thermal management and insulation Modules Nanoparticles nonlinear resistive field grading Packaging packaging of medium-voltage (MV) SiC power module Partial discharges polymer-nanoparticle composite Polymers Resistance Silicon carbide Substrates Thermal resistance Thermal simulation Voltage |
title | Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Packaging%20of%20a%2010-kV%20Double-Side%20Cooled%20Silicon%20Carbide%20Diode%20Module%20With%20Thin%20Substrates%20Coated%20by%20a%20Nonlinear%20Resistive%20Polymer-Nanoparticle%20Composite&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Zhang,%20Zichen&rft.aucorp=Virginia%20Polytechnic%20Inst.%20and%20State%20Univ.%20(Virginia%20Tech),%20Blacksburg,%20VA%20(United%20States)&rft.date=2022-12-01&rft.volume=37&rft.issue=12&rft.spage=14462&rft.epage=14470&rft.pages=14462-14470&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3190303&rft_dat=%3Cproquest_RIE%3E2709157877%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709157877&rft_id=info:pmid/&rft_ieee_id=9827612&rfr_iscdi=true |