Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite

Medium-voltage silicon carbide (SiC) power modules are a critical component in grid-bound power conversion systems, and the packaging of these modules dictates the performance and reliability of the systems. One of the key issues for packaging the modules is managing the tradeoff between heat dissip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2022-12, Vol.37 (12), p.14462-14470
Hauptverfasser: Zhang, Zichen, Lu, Shengchang, Wang, Boyan, Zhang, Yuhao, Yun, Nick, Sung, Woongje, Ngo, Khai D. T., Lu, Guo-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14470
container_issue 12
container_start_page 14462
container_title IEEE transactions on power electronics
container_volume 37
creator Zhang, Zichen
Lu, Shengchang
Wang, Boyan
Zhang, Yuhao
Yun, Nick
Sung, Woongje
Ngo, Khai D. T.
Lu, Guo-Quan
description Medium-voltage silicon carbide (SiC) power modules are a critical component in grid-bound power conversion systems, and the packaging of these modules dictates the performance and reliability of the systems. One of the key issues for packaging the modules is managing the tradeoff between heat dissipation and insulation. To improve thermal performance without sacrificing insulation, a 10-kV SiC full-wave diode rectifier was designed and fabricated by incorporating double-sided cooling and wirebond-less interconnection and by utilizing thin alumina direct-bond copper substrates. To ensure that the substrates met insulation requirement, triple points on the substrates were coated by a nonlinear resistive polymer-nanoparticle composite to reduce electric field concentration. The nonlinear resistive coating increased the partial discharge inception voltage of the substrate with 0.5-mm thick alumina to 17.3 kV, an 84% improvement over that of the substrate without the coating. Electrical and thermal simulations of the module showed a low power loop inductance of 3.51 nH and a low junction-to-case thermal resistance of 0.114°C/W. The feasibility of the packaging techniques was demonstrated from successful fabrication and functional testing of the packagedmodule.
doi_str_mv 10.1109/TPEL.2022.3190303
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_2422281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9827612</ieee_id><sourcerecordid>2709157877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-9dc79d726398f1a6bc64b67876bb4848c3a3e035ab2ba76598f693f6fe8f1a643</originalsourceid><addsrcrecordid>eNo9kd1uEzEQhS0EEqHwAIgbC6439c_u2r5EaYFKoUQkwKVle2cbt5t1anuR8iY8Ll5ScTMjjb4zZ0YHobeULCkl6nK3uV4vGWFsyakinPBnaEFVTStCiXiOFkTKppJK8ZfoVUr3hNC6IXSB_myMezB3frzDoccGU1I9_MRXYbIDVFvfAV6FMECHt37wLox4ZaKdx1c-lPo1dNMA-JfPe7zb-xFvJ5tyNBlSEZbWYXsqa2_DOPgRTMTfIfmU_W_AmzCcDhCrWzOGo4nZu2F2OxxD8hleoxe9GRK8eeoX6Men693qS7X-9vlm9XFdOc5IrlTnhOoEa7mSPTWtdW1tWyFFa20ta-m44UB4YyyzRrRNoVrF-7aHf3jNL9D7895QrtLJFWu3L4-O4LJmNWNM0gJ9OEPHGB4nSFnfhymO5S7NBFG0KYaiUPRMuRhSitDrY_QHE0-aEj2npOeU9JySfkqpaN6dNR4A_vNKMtFSxv8Ci-2N9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709157877</pqid></control><display><type>article</type><title>Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Zichen ; Lu, Shengchang ; Wang, Boyan ; Zhang, Yuhao ; Yun, Nick ; Sung, Woongje ; Ngo, Khai D. T. ; Lu, Guo-Quan</creator><creatorcontrib>Zhang, Zichen ; Lu, Shengchang ; Wang, Boyan ; Zhang, Yuhao ; Yun, Nick ; Sung, Woongje ; Ngo, Khai D. T. ; Lu, Guo-Quan ; Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><description>Medium-voltage silicon carbide (SiC) power modules are a critical component in grid-bound power conversion systems, and the packaging of these modules dictates the performance and reliability of the systems. One of the key issues for packaging the modules is managing the tradeoff between heat dissipation and insulation. To improve thermal performance without sacrificing insulation, a 10-kV SiC full-wave diode rectifier was designed and fabricated by incorporating double-sided cooling and wirebond-less interconnection and by utilizing thin alumina direct-bond copper substrates. To ensure that the substrates met insulation requirement, triple points on the substrates were coated by a nonlinear resistive polymer-nanoparticle composite to reduce electric field concentration. The nonlinear resistive coating increased the partial discharge inception voltage of the substrate with 0.5-mm thick alumina to 17.3 kV, an 84% improvement over that of the substrate without the coating. Electrical and thermal simulations of the module showed a low power loop inductance of 3.51 nH and a low junction-to-case thermal resistance of 0.114°C/W. The feasibility of the packaging techniques was demonstrated from successful fabrication and functional testing of the packagedmodule.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3190303</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum oxide ; Coatings ; Cooling ; Critical components ; Diode rectifiers ; Electric fields ; Electric potential ; Electronic packaging thermal management ; Energy conversion ; Engineering ; Functional testing ; Inductance ; Insulation ; Module thermal management and insulation ; Modules ; Nanoparticles ; nonlinear resistive field grading ; Packaging ; packaging of medium-voltage (MV) SiC power module ; Partial discharges ; polymer-nanoparticle composite ; Polymers ; Resistance ; Silicon carbide ; Substrates ; Thermal resistance ; Thermal simulation ; Voltage</subject><ispartof>IEEE transactions on power electronics, 2022-12, Vol.37 (12), p.14462-14470</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-9dc79d726398f1a6bc64b67876bb4848c3a3e035ab2ba76598f693f6fe8f1a643</citedby><cites>FETCH-LOGICAL-c320t-9dc79d726398f1a6bc64b67876bb4848c3a3e035ab2ba76598f693f6fe8f1a643</cites><orcidid>0000-0001-7639-274X ; 0000-0002-0326-3055 ; 0000-0002-3813-0797 ; 0000-0001-9986-835X ; 0000-0003-3079-8589 ; 0000-0001-6350-4861 ; 0000000203263055 ; 0000000238130797 ; 0000000163504861 ; 000000019986835X ; 0000000330798589 ; 000000017639274X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9827612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9827612$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/2422281$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Lu, Shengchang</creatorcontrib><creatorcontrib>Wang, Boyan</creatorcontrib><creatorcontrib>Zhang, Yuhao</creatorcontrib><creatorcontrib>Yun, Nick</creatorcontrib><creatorcontrib>Sung, Woongje</creatorcontrib><creatorcontrib>Ngo, Khai D. T.</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><title>Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Medium-voltage silicon carbide (SiC) power modules are a critical component in grid-bound power conversion systems, and the packaging of these modules dictates the performance and reliability of the systems. One of the key issues for packaging the modules is managing the tradeoff between heat dissipation and insulation. To improve thermal performance without sacrificing insulation, a 10-kV SiC full-wave diode rectifier was designed and fabricated by incorporating double-sided cooling and wirebond-less interconnection and by utilizing thin alumina direct-bond copper substrates. To ensure that the substrates met insulation requirement, triple points on the substrates were coated by a nonlinear resistive polymer-nanoparticle composite to reduce electric field concentration. The nonlinear resistive coating increased the partial discharge inception voltage of the substrate with 0.5-mm thick alumina to 17.3 kV, an 84% improvement over that of the substrate without the coating. Electrical and thermal simulations of the module showed a low power loop inductance of 3.51 nH and a low junction-to-case thermal resistance of 0.114°C/W. The feasibility of the packaging techniques was demonstrated from successful fabrication and functional testing of the packagedmodule.</description><subject>Aluminum oxide</subject><subject>Coatings</subject><subject>Cooling</subject><subject>Critical components</subject><subject>Diode rectifiers</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electronic packaging thermal management</subject><subject>Energy conversion</subject><subject>Engineering</subject><subject>Functional testing</subject><subject>Inductance</subject><subject>Insulation</subject><subject>Module thermal management and insulation</subject><subject>Modules</subject><subject>Nanoparticles</subject><subject>nonlinear resistive field grading</subject><subject>Packaging</subject><subject>packaging of medium-voltage (MV) SiC power module</subject><subject>Partial discharges</subject><subject>polymer-nanoparticle composite</subject><subject>Polymers</subject><subject>Resistance</subject><subject>Silicon carbide</subject><subject>Substrates</subject><subject>Thermal resistance</subject><subject>Thermal simulation</subject><subject>Voltage</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kd1uEzEQhS0EEqHwAIgbC6439c_u2r5EaYFKoUQkwKVle2cbt5t1anuR8iY8Ll5ScTMjjb4zZ0YHobeULCkl6nK3uV4vGWFsyakinPBnaEFVTStCiXiOFkTKppJK8ZfoVUr3hNC6IXSB_myMezB3frzDoccGU1I9_MRXYbIDVFvfAV6FMECHt37wLox4ZaKdx1c-lPo1dNMA-JfPe7zb-xFvJ5tyNBlSEZbWYXsqa2_DOPgRTMTfIfmU_W_AmzCcDhCrWzOGo4nZu2F2OxxD8hleoxe9GRK8eeoX6Men693qS7X-9vlm9XFdOc5IrlTnhOoEa7mSPTWtdW1tWyFFa20ta-m44UB4YyyzRrRNoVrF-7aHf3jNL9D7895QrtLJFWu3L4-O4LJmNWNM0gJ9OEPHGB4nSFnfhymO5S7NBFG0KYaiUPRMuRhSitDrY_QHE0-aEj2npOeU9JySfkqpaN6dNR4A_vNKMtFSxv8Ci-2N9w</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhang, Zichen</creator><creator>Lu, Shengchang</creator><creator>Wang, Boyan</creator><creator>Zhang, Yuhao</creator><creator>Yun, Nick</creator><creator>Sung, Woongje</creator><creator>Ngo, Khai D. T.</creator><creator>Lu, Guo-Quan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7639-274X</orcidid><orcidid>https://orcid.org/0000-0002-0326-3055</orcidid><orcidid>https://orcid.org/0000-0002-3813-0797</orcidid><orcidid>https://orcid.org/0000-0001-9986-835X</orcidid><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid><orcidid>https://orcid.org/0000-0001-6350-4861</orcidid><orcidid>https://orcid.org/0000000203263055</orcidid><orcidid>https://orcid.org/0000000238130797</orcidid><orcidid>https://orcid.org/0000000163504861</orcidid><orcidid>https://orcid.org/000000019986835X</orcidid><orcidid>https://orcid.org/0000000330798589</orcidid><orcidid>https://orcid.org/000000017639274X</orcidid></search><sort><creationdate>20221201</creationdate><title>Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite</title><author>Zhang, Zichen ; Lu, Shengchang ; Wang, Boyan ; Zhang, Yuhao ; Yun, Nick ; Sung, Woongje ; Ngo, Khai D. T. ; Lu, Guo-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-9dc79d726398f1a6bc64b67876bb4848c3a3e035ab2ba76598f693f6fe8f1a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Coatings</topic><topic>Cooling</topic><topic>Critical components</topic><topic>Diode rectifiers</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electronic packaging thermal management</topic><topic>Energy conversion</topic><topic>Engineering</topic><topic>Functional testing</topic><topic>Inductance</topic><topic>Insulation</topic><topic>Module thermal management and insulation</topic><topic>Modules</topic><topic>Nanoparticles</topic><topic>nonlinear resistive field grading</topic><topic>Packaging</topic><topic>packaging of medium-voltage (MV) SiC power module</topic><topic>Partial discharges</topic><topic>polymer-nanoparticle composite</topic><topic>Polymers</topic><topic>Resistance</topic><topic>Silicon carbide</topic><topic>Substrates</topic><topic>Thermal resistance</topic><topic>Thermal simulation</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Lu, Shengchang</creatorcontrib><creatorcontrib>Wang, Boyan</creatorcontrib><creatorcontrib>Zhang, Yuhao</creatorcontrib><creatorcontrib>Yun, Nick</creatorcontrib><creatorcontrib>Sung, Woongje</creatorcontrib><creatorcontrib>Ngo, Khai D. T.</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Zichen</au><au>Lu, Shengchang</au><au>Wang, Boyan</au><au>Zhang, Yuhao</au><au>Yun, Nick</au><au>Sung, Woongje</au><au>Ngo, Khai D. T.</au><au>Lu, Guo-Quan</au><aucorp>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>37</volume><issue>12</issue><spage>14462</spage><epage>14470</epage><pages>14462-14470</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Medium-voltage silicon carbide (SiC) power modules are a critical component in grid-bound power conversion systems, and the packaging of these modules dictates the performance and reliability of the systems. One of the key issues for packaging the modules is managing the tradeoff between heat dissipation and insulation. To improve thermal performance without sacrificing insulation, a 10-kV SiC full-wave diode rectifier was designed and fabricated by incorporating double-sided cooling and wirebond-less interconnection and by utilizing thin alumina direct-bond copper substrates. To ensure that the substrates met insulation requirement, triple points on the substrates were coated by a nonlinear resistive polymer-nanoparticle composite to reduce electric field concentration. The nonlinear resistive coating increased the partial discharge inception voltage of the substrate with 0.5-mm thick alumina to 17.3 kV, an 84% improvement over that of the substrate without the coating. Electrical and thermal simulations of the module showed a low power loop inductance of 3.51 nH and a low junction-to-case thermal resistance of 0.114°C/W. The feasibility of the packaging techniques was demonstrated from successful fabrication and functional testing of the packagedmodule.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3190303</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7639-274X</orcidid><orcidid>https://orcid.org/0000-0002-0326-3055</orcidid><orcidid>https://orcid.org/0000-0002-3813-0797</orcidid><orcidid>https://orcid.org/0000-0001-9986-835X</orcidid><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid><orcidid>https://orcid.org/0000-0001-6350-4861</orcidid><orcidid>https://orcid.org/0000000203263055</orcidid><orcidid>https://orcid.org/0000000238130797</orcidid><orcidid>https://orcid.org/0000000163504861</orcidid><orcidid>https://orcid.org/000000019986835X</orcidid><orcidid>https://orcid.org/0000000330798589</orcidid><orcidid>https://orcid.org/000000017639274X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2022-12, Vol.37 (12), p.14462-14470
issn 0885-8993
1941-0107
language eng
recordid cdi_osti_scitechconnect_2422281
source IEEE Electronic Library (IEL)
subjects Aluminum oxide
Coatings
Cooling
Critical components
Diode rectifiers
Electric fields
Electric potential
Electronic packaging thermal management
Energy conversion
Engineering
Functional testing
Inductance
Insulation
Module thermal management and insulation
Modules
Nanoparticles
nonlinear resistive field grading
Packaging
packaging of medium-voltage (MV) SiC power module
Partial discharges
polymer-nanoparticle composite
Polymers
Resistance
Silicon carbide
Substrates
Thermal resistance
Thermal simulation
Voltage
title Packaging of a 10-kV Double-Side Cooled Silicon Carbide Diode Module With Thin Substrates Coated by a Nonlinear Resistive Polymer-Nanoparticle Composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Packaging%20of%20a%2010-kV%20Double-Side%20Cooled%20Silicon%20Carbide%20Diode%20Module%20With%20Thin%20Substrates%20Coated%20by%20a%20Nonlinear%20Resistive%20Polymer-Nanoparticle%20Composite&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Zhang,%20Zichen&rft.aucorp=Virginia%20Polytechnic%20Inst.%20and%20State%20Univ.%20(Virginia%20Tech),%20Blacksburg,%20VA%20(United%20States)&rft.date=2022-12-01&rft.volume=37&rft.issue=12&rft.spage=14462&rft.epage=14470&rft.pages=14462-14470&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3190303&rft_dat=%3Cproquest_RIE%3E2709157877%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709157877&rft_id=info:pmid/&rft_ieee_id=9827612&rfr_iscdi=true