KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen
Rare event searches allow us to search for new physics at energy scales inaccessible with other means by leveraging specialized large-mass detectors. Machine learning provides a new tool to maximize the information provided by these detectors. The information is sparse, which forces these algorithms...
Gespeichert in:
Veröffentlicht in: | Physical review. C 2023-01, Vol.107 (1), Article 014323 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physical review. C |
container_volume | 107 |
creator | Li, A. Fu, Z. Grant, C. Ozaki, H. Shimizu, I. Song, H. Takeuchi, A. Winslow, L. A. |
description | Rare event searches allow us to search for new physics at energy scales inaccessible with other means by leveraging specialized large-mass detectors. Machine learning provides a new tool to maximize the information provided by these detectors. The information is sparse, which forces these algorithms to start from the lowest level data and exploit all symmetries in the detector to produce results. In this work we present KamNet, which harnesses breakthroughs in geometric deep learning and spatiotemporal data analysis to maximize the physics reach of KamLAND-Zen, a kiloton scale spherical liquid scintillator detector searching for 0νββ. Using a simplified background model for KamLAND, we show that KamNet outperforms a conventional convolutional neural network (CNN) on benchmarking Monte Carlo simulations with an increasing level of robustness. Using simulated data, we then demonstrate KamNet's ability to increase KamLAND-Zen's sensitivity to 0νββ and 2νββ decay to excited states. A key component of this work is the addition of an attention mechanism to elucidate the underlying physics KamNet is using for the background rejection. |
doi_str_mv | 10.1103/PhysRevC.107.014323 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2422155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_107_014323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6f0bf336ce323aa55558c4a8bc2aaef64aec5008d797342a0753a5a2e437fead3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-Ai-L99T9zCbeStUqliqiFy_LdDOx0XYTdtdK_70pVecyL8PLw_AQcs7ZmHMmL59Wu_iM2-mYMzNmXEkhj8hAqLzMyrKUx_-50KdkFOMHY4znrDScDYh9gM0C0xWdeNr4hO8BElY0dpCaNuGmawOsaYXYUY9f--wxfbfhk9ZtoAECUtyiTzQiBLfC2FNoz5xPFtfZG_ozclLDOuLodw_J6-3Ny_Qumz_O7qeTeeZkYVKW12xZS5k77L8H0P0UTkGxdAIA61wBOs1YUZnSSCWAGS1Bg0AlTY1QySG5OHDbmBobXZPQrVzrPbpkhRKCa92X5KHkQhtjwNp2odlA2FnO7N6l_XPZH4w9uJQ_Y3VptA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen</title><source>American Physical Society Journals</source><creator>Li, A. ; Fu, Z. ; Grant, C. ; Ozaki, H. ; Shimizu, I. ; Song, H. ; Takeuchi, A. ; Winslow, L. A.</creator><creatorcontrib>Li, A. ; Fu, Z. ; Grant, C. ; Ozaki, H. ; Shimizu, I. ; Song, H. ; Takeuchi, A. ; Winslow, L. A. ; Univ. of California, Oakland, CA (United States) ; University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><description>Rare event searches allow us to search for new physics at energy scales inaccessible with other means by leveraging specialized large-mass detectors. Machine learning provides a new tool to maximize the information provided by these detectors. The information is sparse, which forces these algorithms to start from the lowest level data and exploit all symmetries in the detector to produce results. In this work we present KamNet, which harnesses breakthroughs in geometric deep learning and spatiotemporal data analysis to maximize the physics reach of KamLAND-Zen, a kiloton scale spherical liquid scintillator detector searching for 0νββ. Using a simplified background model for KamLAND, we show that KamNet outperforms a conventional convolutional neural network (CNN) on benchmarking Monte Carlo simulations with an increasing level of robustness. Using simulated data, we then demonstrate KamNet's ability to increase KamLAND-Zen's sensitivity to 0νββ and 2νββ decay to excited states. A key component of this work is the addition of an attention mechanism to elucidate the underlying physics KamNet is using for the background rejection.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.107.014323</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Neutrinoless double beta decay ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Physics</subject><ispartof>Physical review. C, 2023-01, Vol.107 (1), Article 014323</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6f0bf336ce323aa55558c4a8bc2aaef64aec5008d797342a0753a5a2e437fead3</citedby><cites>FETCH-LOGICAL-c387t-6f0bf336ce323aa55558c4a8bc2aaef64aec5008d797342a0753a5a2e437fead3</cites><orcidid>0000-0003-0496-6809 ; 0000-0002-4844-9339 ; 0000-0003-2705-6461 ; 0000-0002-9970-108X ; 0000-0003-3682-432X ; 0000000304966809 ; 000000033682432X ; 0000000248449339 ; 0000000327056461 ; 000000029970108X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2422155$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, A.</creatorcontrib><creatorcontrib>Fu, Z.</creatorcontrib><creatorcontrib>Grant, C.</creatorcontrib><creatorcontrib>Ozaki, H.</creatorcontrib><creatorcontrib>Shimizu, I.</creatorcontrib><creatorcontrib>Song, H.</creatorcontrib><creatorcontrib>Takeuchi, A.</creatorcontrib><creatorcontrib>Winslow, L. A.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><title>KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen</title><title>Physical review. C</title><description>Rare event searches allow us to search for new physics at energy scales inaccessible with other means by leveraging specialized large-mass detectors. Machine learning provides a new tool to maximize the information provided by these detectors. The information is sparse, which forces these algorithms to start from the lowest level data and exploit all symmetries in the detector to produce results. In this work we present KamNet, which harnesses breakthroughs in geometric deep learning and spatiotemporal data analysis to maximize the physics reach of KamLAND-Zen, a kiloton scale spherical liquid scintillator detector searching for 0νββ. Using a simplified background model for KamLAND, we show that KamNet outperforms a conventional convolutional neural network (CNN) on benchmarking Monte Carlo simulations with an increasing level of robustness. Using simulated data, we then demonstrate KamNet's ability to increase KamLAND-Zen's sensitivity to 0νββ and 2νββ decay to excited states. A key component of this work is the addition of an attention mechanism to elucidate the underlying physics KamNet is using for the background rejection.</description><subject>Neutrinoless double beta decay</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Physics</subject><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsNT-Ai-L99T9zCbeStUqliqiFy_LdDOx0XYTdtdK_70pVecyL8PLw_AQcs7ZmHMmL59Wu_iM2-mYMzNmXEkhj8hAqLzMyrKUx_-50KdkFOMHY4znrDScDYh9gM0C0xWdeNr4hO8BElY0dpCaNuGmawOsaYXYUY9f--wxfbfhk9ZtoAECUtyiTzQiBLfC2FNoz5xPFtfZG_ozclLDOuLodw_J6-3Ny_Qumz_O7qeTeeZkYVKW12xZS5k77L8H0P0UTkGxdAIA61wBOs1YUZnSSCWAGS1Bg0AlTY1QySG5OHDbmBobXZPQrVzrPbpkhRKCa92X5KHkQhtjwNp2odlA2FnO7N6l_XPZH4w9uJQ_Y3VptA</recordid><startdate>20230130</startdate><enddate>20230130</enddate><creator>Li, A.</creator><creator>Fu, Z.</creator><creator>Grant, C.</creator><creator>Ozaki, H.</creator><creator>Shimizu, I.</creator><creator>Song, H.</creator><creator>Takeuchi, A.</creator><creator>Winslow, L. A.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0496-6809</orcidid><orcidid>https://orcid.org/0000-0002-4844-9339</orcidid><orcidid>https://orcid.org/0000-0003-2705-6461</orcidid><orcidid>https://orcid.org/0000-0002-9970-108X</orcidid><orcidid>https://orcid.org/0000-0003-3682-432X</orcidid><orcidid>https://orcid.org/0000000304966809</orcidid><orcidid>https://orcid.org/000000033682432X</orcidid><orcidid>https://orcid.org/0000000248449339</orcidid><orcidid>https://orcid.org/0000000327056461</orcidid><orcidid>https://orcid.org/000000029970108X</orcidid></search><sort><creationdate>20230130</creationdate><title>KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen</title><author>Li, A. ; Fu, Z. ; Grant, C. ; Ozaki, H. ; Shimizu, I. ; Song, H. ; Takeuchi, A. ; Winslow, L. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6f0bf336ce323aa55558c4a8bc2aaef64aec5008d797342a0753a5a2e437fead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Neutrinoless double beta decay</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, A.</creatorcontrib><creatorcontrib>Fu, Z.</creatorcontrib><creatorcontrib>Grant, C.</creatorcontrib><creatorcontrib>Ozaki, H.</creatorcontrib><creatorcontrib>Shimizu, I.</creatorcontrib><creatorcontrib>Song, H.</creatorcontrib><creatorcontrib>Takeuchi, A.</creatorcontrib><creatorcontrib>Winslow, L. A.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, A.</au><au>Fu, Z.</au><au>Grant, C.</au><au>Ozaki, H.</au><au>Shimizu, I.</au><au>Song, H.</au><au>Takeuchi, A.</au><au>Winslow, L. A.</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>University of North Carolina, Chapel Hill, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen</atitle><jtitle>Physical review. C</jtitle><date>2023-01-30</date><risdate>2023</risdate><volume>107</volume><issue>1</issue><artnum>014323</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>Rare event searches allow us to search for new physics at energy scales inaccessible with other means by leveraging specialized large-mass detectors. Machine learning provides a new tool to maximize the information provided by these detectors. The information is sparse, which forces these algorithms to start from the lowest level data and exploit all symmetries in the detector to produce results. In this work we present KamNet, which harnesses breakthroughs in geometric deep learning and spatiotemporal data analysis to maximize the physics reach of KamLAND-Zen, a kiloton scale spherical liquid scintillator detector searching for 0νββ. Using a simplified background model for KamLAND, we show that KamNet outperforms a conventional convolutional neural network (CNN) on benchmarking Monte Carlo simulations with an increasing level of robustness. Using simulated data, we then demonstrate KamNet's ability to increase KamLAND-Zen's sensitivity to 0νββ and 2νββ decay to excited states. A key component of this work is the addition of an attention mechanism to elucidate the underlying physics KamNet is using for the background rejection.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevC.107.014323</doi><orcidid>https://orcid.org/0000-0003-0496-6809</orcidid><orcidid>https://orcid.org/0000-0002-4844-9339</orcidid><orcidid>https://orcid.org/0000-0003-2705-6461</orcidid><orcidid>https://orcid.org/0000-0002-9970-108X</orcidid><orcidid>https://orcid.org/0000-0003-3682-432X</orcidid><orcidid>https://orcid.org/0000000304966809</orcidid><orcidid>https://orcid.org/000000033682432X</orcidid><orcidid>https://orcid.org/0000000248449339</orcidid><orcidid>https://orcid.org/0000000327056461</orcidid><orcidid>https://orcid.org/000000029970108X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9985 |
ispartof | Physical review. C, 2023-01, Vol.107 (1), Article 014323 |
issn | 2469-9985 2469-9993 |
language | eng |
recordid | cdi_osti_scitechconnect_2422155 |
source | American Physical Society Journals |
subjects | Neutrinoless double beta decay NUCLEAR PHYSICS AND RADIATION PHYSICS Physics |
title | KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KamNet:%20An%20integrated%20spatiotemporal%20deep%20neural%20network%20for%20rare%20event%20searches%20in%20KamLAND-Zen&rft.jtitle=Physical%20review.%20C&rft.au=Li,%20A.&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2023-01-30&rft.volume=107&rft.issue=1&rft.artnum=014323&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.107.014323&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_107_014323%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |