KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen

Rare event searches allow us to search for new physics at energy scales inaccessible with other means by leveraging specialized large-mass detectors. Machine learning provides a new tool to maximize the information provided by these detectors. The information is sparse, which forces these algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. C 2023-01, Vol.107 (1), Article 014323
Hauptverfasser: Li, A., Fu, Z., Grant, C., Ozaki, H., Shimizu, I., Song, H., Takeuchi, A., Winslow, L. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physical review. C
container_volume 107
creator Li, A.
Fu, Z.
Grant, C.
Ozaki, H.
Shimizu, I.
Song, H.
Takeuchi, A.
Winslow, L. A.
description Rare event searches allow us to search for new physics at energy scales inaccessible with other means by leveraging specialized large-mass detectors. Machine learning provides a new tool to maximize the information provided by these detectors. The information is sparse, which forces these algorithms to start from the lowest level data and exploit all symmetries in the detector to produce results. In this work we present KamNet, which harnesses breakthroughs in geometric deep learning and spatiotemporal data analysis to maximize the physics reach of KamLAND-Zen, a kiloton scale spherical liquid scintillator detector searching for 0⁢νβ⁢β. Using a simplified background model for KamLAND, we show that KamNet outperforms a conventional convolutional neural network (CNN) on benchmarking Monte Carlo simulations with an increasing level of robustness. Using simulated data, we then demonstrate KamNet's ability to increase KamLAND-Zen's sensitivity to 0ν⁢ββ and 2⁢ν⁢β⁢β decay to excited states. A key component of this work is the addition of an attention mechanism to elucidate the underlying physics KamNet is using for the background rejection.
doi_str_mv 10.1103/PhysRevC.107.014323
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2422155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_107_014323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6f0bf336ce323aa55558c4a8bc2aaef64aec5008d797342a0753a5a2e437fead3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-Ai-L99T9zCbeStUqliqiFy_LdDOx0XYTdtdK_70pVecyL8PLw_AQcs7ZmHMmL59Wu_iM2-mYMzNmXEkhj8hAqLzMyrKUx_-50KdkFOMHY4znrDScDYh9gM0C0xWdeNr4hO8BElY0dpCaNuGmawOsaYXYUY9f--wxfbfhk9ZtoAECUtyiTzQiBLfC2FNoz5xPFtfZG_ozclLDOuLodw_J6-3Ny_Qumz_O7qeTeeZkYVKW12xZS5k77L8H0P0UTkGxdAIA61wBOs1YUZnSSCWAGS1Bg0AlTY1QySG5OHDbmBobXZPQrVzrPbpkhRKCa92X5KHkQhtjwNp2odlA2FnO7N6l_XPZH4w9uJQ_Y3VptA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen</title><source>American Physical Society Journals</source><creator>Li, A. ; Fu, Z. ; Grant, C. ; Ozaki, H. ; Shimizu, I. ; Song, H. ; Takeuchi, A. ; Winslow, L. A.</creator><creatorcontrib>Li, A. ; Fu, Z. ; Grant, C. ; Ozaki, H. ; Shimizu, I. ; Song, H. ; Takeuchi, A. ; Winslow, L. A. ; Univ. of California, Oakland, CA (United States) ; University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><description>Rare event searches allow us to search for new physics at energy scales inaccessible with other means by leveraging specialized large-mass detectors. Machine learning provides a new tool to maximize the information provided by these detectors. The information is sparse, which forces these algorithms to start from the lowest level data and exploit all symmetries in the detector to produce results. In this work we present KamNet, which harnesses breakthroughs in geometric deep learning and spatiotemporal data analysis to maximize the physics reach of KamLAND-Zen, a kiloton scale spherical liquid scintillator detector searching for 0⁢νβ⁢β. Using a simplified background model for KamLAND, we show that KamNet outperforms a conventional convolutional neural network (CNN) on benchmarking Monte Carlo simulations with an increasing level of robustness. Using simulated data, we then demonstrate KamNet's ability to increase KamLAND-Zen's sensitivity to 0ν⁢ββ and 2⁢ν⁢β⁢β decay to excited states. A key component of this work is the addition of an attention mechanism to elucidate the underlying physics KamNet is using for the background rejection.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.107.014323</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Neutrinoless double beta decay ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Physics</subject><ispartof>Physical review. C, 2023-01, Vol.107 (1), Article 014323</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6f0bf336ce323aa55558c4a8bc2aaef64aec5008d797342a0753a5a2e437fead3</citedby><cites>FETCH-LOGICAL-c387t-6f0bf336ce323aa55558c4a8bc2aaef64aec5008d797342a0753a5a2e437fead3</cites><orcidid>0000-0003-0496-6809 ; 0000-0002-4844-9339 ; 0000-0003-2705-6461 ; 0000-0002-9970-108X ; 0000-0003-3682-432X ; 0000000304966809 ; 000000033682432X ; 0000000248449339 ; 0000000327056461 ; 000000029970108X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2422155$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, A.</creatorcontrib><creatorcontrib>Fu, Z.</creatorcontrib><creatorcontrib>Grant, C.</creatorcontrib><creatorcontrib>Ozaki, H.</creatorcontrib><creatorcontrib>Shimizu, I.</creatorcontrib><creatorcontrib>Song, H.</creatorcontrib><creatorcontrib>Takeuchi, A.</creatorcontrib><creatorcontrib>Winslow, L. A.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><title>KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen</title><title>Physical review. C</title><description>Rare event searches allow us to search for new physics at energy scales inaccessible with other means by leveraging specialized large-mass detectors. Machine learning provides a new tool to maximize the information provided by these detectors. The information is sparse, which forces these algorithms to start from the lowest level data and exploit all symmetries in the detector to produce results. In this work we present KamNet, which harnesses breakthroughs in geometric deep learning and spatiotemporal data analysis to maximize the physics reach of KamLAND-Zen, a kiloton scale spherical liquid scintillator detector searching for 0⁢νβ⁢β. Using a simplified background model for KamLAND, we show that KamNet outperforms a conventional convolutional neural network (CNN) on benchmarking Monte Carlo simulations with an increasing level of robustness. Using simulated data, we then demonstrate KamNet's ability to increase KamLAND-Zen's sensitivity to 0ν⁢ββ and 2⁢ν⁢β⁢β decay to excited states. A key component of this work is the addition of an attention mechanism to elucidate the underlying physics KamNet is using for the background rejection.</description><subject>Neutrinoless double beta decay</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Physics</subject><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsNT-Ai-L99T9zCbeStUqliqiFy_LdDOx0XYTdtdK_70pVecyL8PLw_AQcs7ZmHMmL59Wu_iM2-mYMzNmXEkhj8hAqLzMyrKUx_-50KdkFOMHY4znrDScDYh9gM0C0xWdeNr4hO8BElY0dpCaNuGmawOsaYXYUY9f--wxfbfhk9ZtoAECUtyiTzQiBLfC2FNoz5xPFtfZG_ozclLDOuLodw_J6-3Ny_Qumz_O7qeTeeZkYVKW12xZS5k77L8H0P0UTkGxdAIA61wBOs1YUZnSSCWAGS1Bg0AlTY1QySG5OHDbmBobXZPQrVzrPbpkhRKCa92X5KHkQhtjwNp2odlA2FnO7N6l_XPZH4w9uJQ_Y3VptA</recordid><startdate>20230130</startdate><enddate>20230130</enddate><creator>Li, A.</creator><creator>Fu, Z.</creator><creator>Grant, C.</creator><creator>Ozaki, H.</creator><creator>Shimizu, I.</creator><creator>Song, H.</creator><creator>Takeuchi, A.</creator><creator>Winslow, L. A.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0496-6809</orcidid><orcidid>https://orcid.org/0000-0002-4844-9339</orcidid><orcidid>https://orcid.org/0000-0003-2705-6461</orcidid><orcidid>https://orcid.org/0000-0002-9970-108X</orcidid><orcidid>https://orcid.org/0000-0003-3682-432X</orcidid><orcidid>https://orcid.org/0000000304966809</orcidid><orcidid>https://orcid.org/000000033682432X</orcidid><orcidid>https://orcid.org/0000000248449339</orcidid><orcidid>https://orcid.org/0000000327056461</orcidid><orcidid>https://orcid.org/000000029970108X</orcidid></search><sort><creationdate>20230130</creationdate><title>KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen</title><author>Li, A. ; Fu, Z. ; Grant, C. ; Ozaki, H. ; Shimizu, I. ; Song, H. ; Takeuchi, A. ; Winslow, L. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6f0bf336ce323aa55558c4a8bc2aaef64aec5008d797342a0753a5a2e437fead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Neutrinoless double beta decay</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, A.</creatorcontrib><creatorcontrib>Fu, Z.</creatorcontrib><creatorcontrib>Grant, C.</creatorcontrib><creatorcontrib>Ozaki, H.</creatorcontrib><creatorcontrib>Shimizu, I.</creatorcontrib><creatorcontrib>Song, H.</creatorcontrib><creatorcontrib>Takeuchi, A.</creatorcontrib><creatorcontrib>Winslow, L. A.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, A.</au><au>Fu, Z.</au><au>Grant, C.</au><au>Ozaki, H.</au><au>Shimizu, I.</au><au>Song, H.</au><au>Takeuchi, A.</au><au>Winslow, L. A.</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>University of North Carolina, Chapel Hill, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen</atitle><jtitle>Physical review. C</jtitle><date>2023-01-30</date><risdate>2023</risdate><volume>107</volume><issue>1</issue><artnum>014323</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>Rare event searches allow us to search for new physics at energy scales inaccessible with other means by leveraging specialized large-mass detectors. Machine learning provides a new tool to maximize the information provided by these detectors. The information is sparse, which forces these algorithms to start from the lowest level data and exploit all symmetries in the detector to produce results. In this work we present KamNet, which harnesses breakthroughs in geometric deep learning and spatiotemporal data analysis to maximize the physics reach of KamLAND-Zen, a kiloton scale spherical liquid scintillator detector searching for 0⁢νβ⁢β. Using a simplified background model for KamLAND, we show that KamNet outperforms a conventional convolutional neural network (CNN) on benchmarking Monte Carlo simulations with an increasing level of robustness. Using simulated data, we then demonstrate KamNet's ability to increase KamLAND-Zen's sensitivity to 0ν⁢ββ and 2⁢ν⁢β⁢β decay to excited states. A key component of this work is the addition of an attention mechanism to elucidate the underlying physics KamNet is using for the background rejection.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevC.107.014323</doi><orcidid>https://orcid.org/0000-0003-0496-6809</orcidid><orcidid>https://orcid.org/0000-0002-4844-9339</orcidid><orcidid>https://orcid.org/0000-0003-2705-6461</orcidid><orcidid>https://orcid.org/0000-0002-9970-108X</orcidid><orcidid>https://orcid.org/0000-0003-3682-432X</orcidid><orcidid>https://orcid.org/0000000304966809</orcidid><orcidid>https://orcid.org/000000033682432X</orcidid><orcidid>https://orcid.org/0000000248449339</orcidid><orcidid>https://orcid.org/0000000327056461</orcidid><orcidid>https://orcid.org/000000029970108X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9985
ispartof Physical review. C, 2023-01, Vol.107 (1), Article 014323
issn 2469-9985
2469-9993
language eng
recordid cdi_osti_scitechconnect_2422155
source American Physical Society Journals
subjects Neutrinoless double beta decay
NUCLEAR PHYSICS AND RADIATION PHYSICS
Physics
title KamNet: An integrated spatiotemporal deep neural network for rare event searches in KamLAND-Zen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KamNet:%20An%20integrated%20spatiotemporal%20deep%20neural%20network%20for%20rare%20event%20searches%20in%20KamLAND-Zen&rft.jtitle=Physical%20review.%20C&rft.au=Li,%20A.&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2023-01-30&rft.volume=107&rft.issue=1&rft.artnum=014323&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.107.014323&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_107_014323%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true