Can Biomass Burning Aerosol Induced Surface Cooling Be Amplified Through Sea Surface Temperature‐Cloud Feedback Over the Southeast Atlantic?

Abstract Biomass burning (BB) aerosols exert a strong surface cooling effect over the southeast Atlantic (SEA) via aerosol‐radiation and aerosol‐cloud interactions. The reduction of the sea surface temperature (SST) can trigger the SST‐low cloud feedback. Whether this feedback can amplify the surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2023-01, Vol.50 (3)
Hauptverfasser: Lu, Zheng, Liu, Xiaohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Geophysical research letters
container_volume 50
creator Lu, Zheng
Liu, Xiaohong
description Abstract Biomass burning (BB) aerosols exert a strong surface cooling effect over the southeast Atlantic (SEA) via aerosol‐radiation and aerosol‐cloud interactions. The reduction of the sea surface temperature (SST) can trigger the SST‐low cloud feedback. Whether this feedback can amplify the surface cooling effect is examined. The modeling results from the Community Earth System Model version 2 (CESM2) demonstrate that counterintuitively the cloud radiative effect (CRE) caused by the BB aerosols is weaker if SST‐low cloud feedback is considered compared to fixed‐SST simulation (−2.99 W m−2vs. −4.79 W m−2). This is caused by (a) stronger sea breeze due to larger sea‐land temperature contrast causing less smoke transport over SEA and (b) less moisture supply from surface due to colder SST. Changes in SST also lead to counterclockwise rotation of ocean circulation anomalies. Consequently, the excess heat transport from the equator reverses the direction of SST‐cloud feedback in this region.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2422005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422005</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24220053</originalsourceid><addsrcrecordid>eNqNyjtuwkAQgOEtiBTyuMOIHmmxyYMK2RYoVBR2jybrMd5kvYN2dqlzgihnzEkACaVO9RffP1JjrRfz6Wv28nyr7kQ-tNa5zmdj9V2hh9LygCJQpuCt30NBgYUdbHybDLVQp9ChIaiY3cVLgmI4ONvZMzZ94LTvoSb8GxsaDhQwpkC_Xz-V49TCmqh9R_MJ2yMFiD1BzekclAhFdOijNcsHddOhE3q89l5N1qumepuyRLsTYyOZ3rD3ZOIum2eZ1k_5v6YTlmdVHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Can Biomass Burning Aerosol Induced Surface Cooling Be Amplified Through Sea Surface Temperature‐Cloud Feedback Over the Southeast Atlantic?</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lu, Zheng ; Liu, Xiaohong</creator><creatorcontrib>Lu, Zheng ; Liu, Xiaohong ; Texas A &amp; M Univ., College Station, TX (United States)</creatorcontrib><description>Abstract Biomass burning (BB) aerosols exert a strong surface cooling effect over the southeast Atlantic (SEA) via aerosol‐radiation and aerosol‐cloud interactions. The reduction of the sea surface temperature (SST) can trigger the SST‐low cloud feedback. Whether this feedback can amplify the surface cooling effect is examined. The modeling results from the Community Earth System Model version 2 (CESM2) demonstrate that counterintuitively the cloud radiative effect (CRE) caused by the BB aerosols is weaker if SST‐low cloud feedback is considered compared to fixed‐SST simulation (−2.99 W m−2vs. −4.79 W m−2). This is caused by (a) stronger sea breeze due to larger sea‐land temperature contrast causing less smoke transport over SEA and (b) less moisture supply from surface due to colder SST. Changes in SST also lead to counterclockwise rotation of ocean circulation anomalies. Consequently, the excess heat transport from the equator reverses the direction of SST‐cloud feedback in this region.</description><identifier>ISSN: 0094-8276</identifier><language>eng</language><publisher>United States: American Geophysical Union (AGU)</publisher><subject>Geology</subject><ispartof>Geophysical research letters, 2023-01, Vol.50 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000165910687 ; 0000000239945955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2422005$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Zheng</creatorcontrib><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Texas A &amp; M Univ., College Station, TX (United States)</creatorcontrib><title>Can Biomass Burning Aerosol Induced Surface Cooling Be Amplified Through Sea Surface Temperature‐Cloud Feedback Over the Southeast Atlantic?</title><title>Geophysical research letters</title><description>Abstract Biomass burning (BB) aerosols exert a strong surface cooling effect over the southeast Atlantic (SEA) via aerosol‐radiation and aerosol‐cloud interactions. The reduction of the sea surface temperature (SST) can trigger the SST‐low cloud feedback. Whether this feedback can amplify the surface cooling effect is examined. The modeling results from the Community Earth System Model version 2 (CESM2) demonstrate that counterintuitively the cloud radiative effect (CRE) caused by the BB aerosols is weaker if SST‐low cloud feedback is considered compared to fixed‐SST simulation (−2.99 W m−2vs. −4.79 W m−2). This is caused by (a) stronger sea breeze due to larger sea‐land temperature contrast causing less smoke transport over SEA and (b) less moisture supply from surface due to colder SST. Changes in SST also lead to counterclockwise rotation of ocean circulation anomalies. Consequently, the excess heat transport from the equator reverses the direction of SST‐cloud feedback in this region.</description><subject>Geology</subject><issn>0094-8276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNyjtuwkAQgOEtiBTyuMOIHmmxyYMK2RYoVBR2jybrMd5kvYN2dqlzgihnzEkACaVO9RffP1JjrRfz6Wv28nyr7kQ-tNa5zmdj9V2hh9LygCJQpuCt30NBgYUdbHybDLVQp9ChIaiY3cVLgmI4ONvZMzZ94LTvoSb8GxsaDhQwpkC_Xz-V49TCmqh9R_MJ2yMFiD1BzekclAhFdOijNcsHddOhE3q89l5N1qumepuyRLsTYyOZ3rD3ZOIum2eZ1k_5v6YTlmdVHw</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>Lu, Zheng</creator><creator>Liu, Xiaohong</creator><general>American Geophysical Union (AGU)</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000165910687</orcidid><orcidid>https://orcid.org/0000000239945955</orcidid></search><sort><creationdate>20230131</creationdate><title>Can Biomass Burning Aerosol Induced Surface Cooling Be Amplified Through Sea Surface Temperature‐Cloud Feedback Over the Southeast Atlantic?</title><author>Lu, Zheng ; Liu, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24220053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Zheng</creatorcontrib><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Texas A &amp; M Univ., College Station, TX (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Zheng</au><au>Liu, Xiaohong</au><aucorp>Texas A &amp; M Univ., College Station, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can Biomass Burning Aerosol Induced Surface Cooling Be Amplified Through Sea Surface Temperature‐Cloud Feedback Over the Southeast Atlantic?</atitle><jtitle>Geophysical research letters</jtitle><date>2023-01-31</date><risdate>2023</risdate><volume>50</volume><issue>3</issue><issn>0094-8276</issn><abstract>Abstract Biomass burning (BB) aerosols exert a strong surface cooling effect over the southeast Atlantic (SEA) via aerosol‐radiation and aerosol‐cloud interactions. The reduction of the sea surface temperature (SST) can trigger the SST‐low cloud feedback. Whether this feedback can amplify the surface cooling effect is examined. The modeling results from the Community Earth System Model version 2 (CESM2) demonstrate that counterintuitively the cloud radiative effect (CRE) caused by the BB aerosols is weaker if SST‐low cloud feedback is considered compared to fixed‐SST simulation (−2.99 W m−2vs. −4.79 W m−2). This is caused by (a) stronger sea breeze due to larger sea‐land temperature contrast causing less smoke transport over SEA and (b) less moisture supply from surface due to colder SST. Changes in SST also lead to counterclockwise rotation of ocean circulation anomalies. Consequently, the excess heat transport from the equator reverses the direction of SST‐cloud feedback in this region.</abstract><cop>United States</cop><pub>American Geophysical Union (AGU)</pub><orcidid>https://orcid.org/0000000165910687</orcidid><orcidid>https://orcid.org/0000000239945955</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2023-01, Vol.50 (3)
issn 0094-8276
language eng
recordid cdi_osti_scitechconnect_2422005
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Geology
title Can Biomass Burning Aerosol Induced Surface Cooling Be Amplified Through Sea Surface Temperature‐Cloud Feedback Over the Southeast Atlantic?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20Biomass%20Burning%20Aerosol%20Induced%20Surface%20Cooling%20Be%20Amplified%20Through%20Sea%20Surface%20Temperature%E2%80%90Cloud%20Feedback%20Over%20the%20Southeast%20Atlantic?&rft.jtitle=Geophysical%20research%20letters&rft.au=Lu,%20Zheng&rft.aucorp=Texas%20A%20&%20M%20Univ.,%20College%20Station,%20TX%20(United%20States)&rft.date=2023-01-31&rft.volume=50&rft.issue=3&rft.issn=0094-8276&rft_id=info:doi/&rft_dat=%3Costi%3E2422005%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true