Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure

Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-07, Vol.62 (30), p.e202305251-n/a
Hauptverfasser: Wang, Hongmin, Fu, Shuting, Shang, Bo, Jeon, Sungho, Zhong, Yiren, Harmon, Nia J., Choi, Chungseok, Stach, Eric A., Wang, Hailiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page e202305251
container_title Angewandte Chemie International Edition
container_volume 62
creator Wang, Hongmin
Fu, Shuting
Shang, Bo
Jeon, Sungho
Zhong, Yiren
Harmon, Nia J.
Choi, Chungseok
Stach, Eric A.
Wang, Hailiang
description Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium‐modified carbon‐supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus‐pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record‐high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production. A potassium‐modified carbon‐supported cobalt catalyst mimicking the structure of a lotus pod is developed. With hierarchical pores, intimate Co/C interfaces, and exposed catalytic sites, the catalyst shows a record‐high photothermal CO2 hydrogenation rate with near‐unity selectivity for CO.
doi_str_mv 10.1002/anie.202305251
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2421787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838922002</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3331-6e8efc72181ff1941b77c27a0cac387aa1c123cf70ba59a738c1b9b4b2c0cde73</originalsourceid><addsrcrecordid>eNpd0c1KAzEQB_AgCtbq1XPQi5et-dhtsseyVi0UW6iePIRsmqUp26Qm2Uo9-Qg-o0_iLhUPnmYGfgzM_AG4xGiAESK30ho9IIhQlJEMH4EezghOKGP0uO1TShPGM3wKzkJYt55zNOyB14Wrpf_-_LrzZqctLGYEFs7utA_GWbgzEs620WzMh17C-cpFF1fab2QNCxllvQ8mQGOhhFMXmwDnbgkX0TcqNl6fg5NK1kFf_NY-eLkfPxePyXT2MClG08RRSnEy1FxXihHMcVXhPMUlY4owiZRUlDMpscKEqoqhUma5ZJQrXOZlWhKF1FIz2gdXh70uRCOCMlGrlXLWahUFSQlmvEM3B7T17q3RIYqNCUrXtbTaNUEQTtqnZIyill7_o2vXeNue0CrKc9LJVuUH9W5qvRdbbzbS7wVGoktDdGmIvzTE6Gky_pvoDwMjgJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838922002</pqid></control><display><type>article</type><title>Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure</title><source>Wiley Online Library All Journals</source><creator>Wang, Hongmin ; Fu, Shuting ; Shang, Bo ; Jeon, Sungho ; Zhong, Yiren ; Harmon, Nia J. ; Choi, Chungseok ; Stach, Eric A. ; Wang, Hailiang</creator><creatorcontrib>Wang, Hongmin ; Fu, Shuting ; Shang, Bo ; Jeon, Sungho ; Zhong, Yiren ; Harmon, Nia J. ; Choi, Chungseok ; Stach, Eric A. ; Wang, Hailiang ; University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><description>Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium‐modified carbon‐supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus‐pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record‐high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production. A potassium‐modified carbon‐supported cobalt catalyst mimicking the structure of a lotus pod is developed. With hierarchical pores, intimate Co/C interfaces, and exposed catalytic sites, the catalyst shows a record‐high photothermal CO2 hydrogenation rate with near‐unity selectivity for CO.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202305251</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Active sites ; Bonding strength ; Carbon dioxide ; Catalysis ; Catalysts ; Chemical reduction ; Chemistry ; CO2 Hydrogenation ; Cobalt ; Fuel production ; Fuels ; Hybrid Material ; Photochemical reactions ; Photochemicals ; Photothermal Catalysis ; Photothermal conversion ; Potassium ; Reverse Water-Gas Shift ; Reverse water-gas shift (RWGS) ; Solar energy ; Solar Fuel ; Substrates</subject><ispartof>Angewandte Chemie International Edition, 2023-07, Vol.62 (30), p.e202305251-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4409-2034 ; 0000-0003-2714-4250 ; 0000000327144250 ; 0000000344092034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202305251$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202305251$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2421787$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hongmin</creatorcontrib><creatorcontrib>Fu, Shuting</creatorcontrib><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Jeon, Sungho</creatorcontrib><creatorcontrib>Zhong, Yiren</creatorcontrib><creatorcontrib>Harmon, Nia J.</creatorcontrib><creatorcontrib>Choi, Chungseok</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><title>Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure</title><title>Angewandte Chemie International Edition</title><description>Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium‐modified carbon‐supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus‐pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record‐high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production. A potassium‐modified carbon‐supported cobalt catalyst mimicking the structure of a lotus pod is developed. With hierarchical pores, intimate Co/C interfaces, and exposed catalytic sites, the catalyst shows a record‐high photothermal CO2 hydrogenation rate with near‐unity selectivity for CO.</description><subject>Active sites</subject><subject>Bonding strength</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>CO2 Hydrogenation</subject><subject>Cobalt</subject><subject>Fuel production</subject><subject>Fuels</subject><subject>Hybrid Material</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Photothermal Catalysis</subject><subject>Photothermal conversion</subject><subject>Potassium</subject><subject>Reverse Water-Gas Shift</subject><subject>Reverse water-gas shift (RWGS)</subject><subject>Solar energy</subject><subject>Solar Fuel</subject><subject>Substrates</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c1KAzEQB_AgCtbq1XPQi5et-dhtsseyVi0UW6iePIRsmqUp26Qm2Uo9-Qg-o0_iLhUPnmYGfgzM_AG4xGiAESK30ho9IIhQlJEMH4EezghOKGP0uO1TShPGM3wKzkJYt55zNOyB14Wrpf_-_LrzZqctLGYEFs7utA_GWbgzEs620WzMh17C-cpFF1fab2QNCxllvQ8mQGOhhFMXmwDnbgkX0TcqNl6fg5NK1kFf_NY-eLkfPxePyXT2MClG08RRSnEy1FxXihHMcVXhPMUlY4owiZRUlDMpscKEqoqhUma5ZJQrXOZlWhKF1FIz2gdXh70uRCOCMlGrlXLWahUFSQlmvEM3B7T17q3RIYqNCUrXtbTaNUEQTtqnZIyill7_o2vXeNue0CrKc9LJVuUH9W5qvRdbbzbS7wVGoktDdGmIvzTE6Gky_pvoDwMjgJA</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>Wang, Hongmin</creator><creator>Fu, Shuting</creator><creator>Shang, Bo</creator><creator>Jeon, Sungho</creator><creator>Zhong, Yiren</creator><creator>Harmon, Nia J.</creator><creator>Choi, Chungseok</creator><creator>Stach, Eric A.</creator><creator>Wang, Hailiang</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><orcidid>https://orcid.org/0000-0003-2714-4250</orcidid><orcidid>https://orcid.org/0000000327144250</orcidid><orcidid>https://orcid.org/0000000344092034</orcidid></search><sort><creationdate>20230724</creationdate><title>Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure</title><author>Wang, Hongmin ; Fu, Shuting ; Shang, Bo ; Jeon, Sungho ; Zhong, Yiren ; Harmon, Nia J. ; Choi, Chungseok ; Stach, Eric A. ; Wang, Hailiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3331-6e8efc72181ff1941b77c27a0cac387aa1c123cf70ba59a738c1b9b4b2c0cde73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active sites</topic><topic>Bonding strength</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>CO2 Hydrogenation</topic><topic>Cobalt</topic><topic>Fuel production</topic><topic>Fuels</topic><topic>Hybrid Material</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Photothermal Catalysis</topic><topic>Photothermal conversion</topic><topic>Potassium</topic><topic>Reverse Water-Gas Shift</topic><topic>Reverse water-gas shift (RWGS)</topic><topic>Solar energy</topic><topic>Solar Fuel</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongmin</creatorcontrib><creatorcontrib>Fu, Shuting</creatorcontrib><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Jeon, Sungho</creatorcontrib><creatorcontrib>Zhong, Yiren</creatorcontrib><creatorcontrib>Harmon, Nia J.</creatorcontrib><creatorcontrib>Choi, Chungseok</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongmin</au><au>Fu, Shuting</au><au>Shang, Bo</au><au>Jeon, Sungho</au><au>Zhong, Yiren</au><au>Harmon, Nia J.</au><au>Choi, Chungseok</au><au>Stach, Eric A.</au><au>Wang, Hailiang</au><aucorp>University of North Carolina, Chapel Hill, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-07-24</date><risdate>2023</risdate><volume>62</volume><issue>30</issue><spage>e202305251</spage><epage>n/a</epage><pages>e202305251-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium‐modified carbon‐supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus‐pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record‐high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production. A potassium‐modified carbon‐supported cobalt catalyst mimicking the structure of a lotus pod is developed. With hierarchical pores, intimate Co/C interfaces, and exposed catalytic sites, the catalyst shows a record‐high photothermal CO2 hydrogenation rate with near‐unity selectivity for CO.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202305251</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><orcidid>https://orcid.org/0000-0003-2714-4250</orcidid><orcidid>https://orcid.org/0000000327144250</orcidid><orcidid>https://orcid.org/0000000344092034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-07, Vol.62 (30), p.e202305251-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_2421787
source Wiley Online Library All Journals
subjects Active sites
Bonding strength
Carbon dioxide
Catalysis
Catalysts
Chemical reduction
Chemistry
CO2 Hydrogenation
Cobalt
Fuel production
Fuels
Hybrid Material
Photochemical reactions
Photochemicals
Photothermal Catalysis
Photothermal conversion
Potassium
Reverse Water-Gas Shift
Reverse water-gas shift (RWGS)
Solar energy
Solar Fuel
Substrates
title Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%E2%80%90Driven%20CO2%20Conversion%20via%20Optimized%20Photothermal%20Catalysis%20in%20a%20Lotus%20Pod%20Structure&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Hongmin&rft.aucorp=University%20of%20North%20Carolina,%20Chapel%20Hill,%20NC%20(United%20States)&rft.date=2023-07-24&rft.volume=62&rft.issue=30&rft.spage=e202305251&rft.epage=n/a&rft.pages=e202305251-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202305251&rft_dat=%3Cproquest_osti_%3E2838922002%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838922002&rft_id=info:pmid/&rfr_iscdi=true