Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure
Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-07, Vol.62 (30), p.e202305251-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 30 |
container_start_page | e202305251 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Wang, Hongmin Fu, Shuting Shang, Bo Jeon, Sungho Zhong, Yiren Harmon, Nia J. Choi, Chungseok Stach, Eric A. Wang, Hailiang |
description | Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium‐modified carbon‐supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus‐pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record‐high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.
A potassium‐modified carbon‐supported cobalt catalyst mimicking the structure of a lotus pod is developed. With hierarchical pores, intimate Co/C interfaces, and exposed catalytic sites, the catalyst shows a record‐high photothermal CO2 hydrogenation rate with near‐unity selectivity for CO. |
doi_str_mv | 10.1002/anie.202305251 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2421787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838922002</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3331-6e8efc72181ff1941b77c27a0cac387aa1c123cf70ba59a738c1b9b4b2c0cde73</originalsourceid><addsrcrecordid>eNpd0c1KAzEQB_AgCtbq1XPQi5et-dhtsseyVi0UW6iePIRsmqUp26Qm2Uo9-Qg-o0_iLhUPnmYGfgzM_AG4xGiAESK30ho9IIhQlJEMH4EezghOKGP0uO1TShPGM3wKzkJYt55zNOyB14Wrpf_-_LrzZqctLGYEFs7utA_GWbgzEs620WzMh17C-cpFF1fab2QNCxllvQ8mQGOhhFMXmwDnbgkX0TcqNl6fg5NK1kFf_NY-eLkfPxePyXT2MClG08RRSnEy1FxXihHMcVXhPMUlY4owiZRUlDMpscKEqoqhUma5ZJQrXOZlWhKF1FIz2gdXh70uRCOCMlGrlXLWahUFSQlmvEM3B7T17q3RIYqNCUrXtbTaNUEQTtqnZIyill7_o2vXeNue0CrKc9LJVuUH9W5qvRdbbzbS7wVGoktDdGmIvzTE6Gky_pvoDwMjgJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838922002</pqid></control><display><type>article</type><title>Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure</title><source>Wiley Online Library All Journals</source><creator>Wang, Hongmin ; Fu, Shuting ; Shang, Bo ; Jeon, Sungho ; Zhong, Yiren ; Harmon, Nia J. ; Choi, Chungseok ; Stach, Eric A. ; Wang, Hailiang</creator><creatorcontrib>Wang, Hongmin ; Fu, Shuting ; Shang, Bo ; Jeon, Sungho ; Zhong, Yiren ; Harmon, Nia J. ; Choi, Chungseok ; Stach, Eric A. ; Wang, Hailiang ; University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><description>Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium‐modified carbon‐supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus‐pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record‐high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.
A potassium‐modified carbon‐supported cobalt catalyst mimicking the structure of a lotus pod is developed. With hierarchical pores, intimate Co/C interfaces, and exposed catalytic sites, the catalyst shows a record‐high photothermal CO2 hydrogenation rate with near‐unity selectivity for CO.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202305251</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Active sites ; Bonding strength ; Carbon dioxide ; Catalysis ; Catalysts ; Chemical reduction ; Chemistry ; CO2 Hydrogenation ; Cobalt ; Fuel production ; Fuels ; Hybrid Material ; Photochemical reactions ; Photochemicals ; Photothermal Catalysis ; Photothermal conversion ; Potassium ; Reverse Water-Gas Shift ; Reverse water-gas shift (RWGS) ; Solar energy ; Solar Fuel ; Substrates</subject><ispartof>Angewandte Chemie International Edition, 2023-07, Vol.62 (30), p.e202305251-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4409-2034 ; 0000-0003-2714-4250 ; 0000000327144250 ; 0000000344092034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202305251$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202305251$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2421787$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hongmin</creatorcontrib><creatorcontrib>Fu, Shuting</creatorcontrib><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Jeon, Sungho</creatorcontrib><creatorcontrib>Zhong, Yiren</creatorcontrib><creatorcontrib>Harmon, Nia J.</creatorcontrib><creatorcontrib>Choi, Chungseok</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><title>Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure</title><title>Angewandte Chemie International Edition</title><description>Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium‐modified carbon‐supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus‐pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record‐high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.
A potassium‐modified carbon‐supported cobalt catalyst mimicking the structure of a lotus pod is developed. With hierarchical pores, intimate Co/C interfaces, and exposed catalytic sites, the catalyst shows a record‐high photothermal CO2 hydrogenation rate with near‐unity selectivity for CO.</description><subject>Active sites</subject><subject>Bonding strength</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>CO2 Hydrogenation</subject><subject>Cobalt</subject><subject>Fuel production</subject><subject>Fuels</subject><subject>Hybrid Material</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Photothermal Catalysis</subject><subject>Photothermal conversion</subject><subject>Potassium</subject><subject>Reverse Water-Gas Shift</subject><subject>Reverse water-gas shift (RWGS)</subject><subject>Solar energy</subject><subject>Solar Fuel</subject><subject>Substrates</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c1KAzEQB_AgCtbq1XPQi5et-dhtsseyVi0UW6iePIRsmqUp26Qm2Uo9-Qg-o0_iLhUPnmYGfgzM_AG4xGiAESK30ho9IIhQlJEMH4EezghOKGP0uO1TShPGM3wKzkJYt55zNOyB14Wrpf_-_LrzZqctLGYEFs7utA_GWbgzEs620WzMh17C-cpFF1fab2QNCxllvQ8mQGOhhFMXmwDnbgkX0TcqNl6fg5NK1kFf_NY-eLkfPxePyXT2MClG08RRSnEy1FxXihHMcVXhPMUlY4owiZRUlDMpscKEqoqhUma5ZJQrXOZlWhKF1FIz2gdXh70uRCOCMlGrlXLWahUFSQlmvEM3B7T17q3RIYqNCUrXtbTaNUEQTtqnZIyill7_o2vXeNue0CrKc9LJVuUH9W5qvRdbbzbS7wVGoktDdGmIvzTE6Gky_pvoDwMjgJA</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>Wang, Hongmin</creator><creator>Fu, Shuting</creator><creator>Shang, Bo</creator><creator>Jeon, Sungho</creator><creator>Zhong, Yiren</creator><creator>Harmon, Nia J.</creator><creator>Choi, Chungseok</creator><creator>Stach, Eric A.</creator><creator>Wang, Hailiang</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><orcidid>https://orcid.org/0000-0003-2714-4250</orcidid><orcidid>https://orcid.org/0000000327144250</orcidid><orcidid>https://orcid.org/0000000344092034</orcidid></search><sort><creationdate>20230724</creationdate><title>Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure</title><author>Wang, Hongmin ; Fu, Shuting ; Shang, Bo ; Jeon, Sungho ; Zhong, Yiren ; Harmon, Nia J. ; Choi, Chungseok ; Stach, Eric A. ; Wang, Hailiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3331-6e8efc72181ff1941b77c27a0cac387aa1c123cf70ba59a738c1b9b4b2c0cde73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active sites</topic><topic>Bonding strength</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>CO2 Hydrogenation</topic><topic>Cobalt</topic><topic>Fuel production</topic><topic>Fuels</topic><topic>Hybrid Material</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Photothermal Catalysis</topic><topic>Photothermal conversion</topic><topic>Potassium</topic><topic>Reverse Water-Gas Shift</topic><topic>Reverse water-gas shift (RWGS)</topic><topic>Solar energy</topic><topic>Solar Fuel</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongmin</creatorcontrib><creatorcontrib>Fu, Shuting</creatorcontrib><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Jeon, Sungho</creatorcontrib><creatorcontrib>Zhong, Yiren</creatorcontrib><creatorcontrib>Harmon, Nia J.</creatorcontrib><creatorcontrib>Choi, Chungseok</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongmin</au><au>Fu, Shuting</au><au>Shang, Bo</au><au>Jeon, Sungho</au><au>Zhong, Yiren</au><au>Harmon, Nia J.</au><au>Choi, Chungseok</au><au>Stach, Eric A.</au><au>Wang, Hailiang</au><aucorp>University of North Carolina, Chapel Hill, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-07-24</date><risdate>2023</risdate><volume>62</volume><issue>30</issue><spage>e202305251</spage><epage>n/a</epage><pages>e202305251-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium‐modified carbon‐supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus‐pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record‐high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.
A potassium‐modified carbon‐supported cobalt catalyst mimicking the structure of a lotus pod is developed. With hierarchical pores, intimate Co/C interfaces, and exposed catalytic sites, the catalyst shows a record‐high photothermal CO2 hydrogenation rate with near‐unity selectivity for CO.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202305251</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><orcidid>https://orcid.org/0000-0003-2714-4250</orcidid><orcidid>https://orcid.org/0000000327144250</orcidid><orcidid>https://orcid.org/0000000344092034</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-07, Vol.62 (30), p.e202305251-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_2421787 |
source | Wiley Online Library All Journals |
subjects | Active sites Bonding strength Carbon dioxide Catalysis Catalysts Chemical reduction Chemistry CO2 Hydrogenation Cobalt Fuel production Fuels Hybrid Material Photochemical reactions Photochemicals Photothermal Catalysis Photothermal conversion Potassium Reverse Water-Gas Shift Reverse water-gas shift (RWGS) Solar energy Solar Fuel Substrates |
title | Solar‐Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%E2%80%90Driven%20CO2%20Conversion%20via%20Optimized%20Photothermal%20Catalysis%20in%20a%20Lotus%20Pod%20Structure&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Hongmin&rft.aucorp=University%20of%20North%20Carolina,%20Chapel%20Hill,%20NC%20(United%20States)&rft.date=2023-07-24&rft.volume=62&rft.issue=30&rft.spage=e202305251&rft.epage=n/a&rft.pages=e202305251-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202305251&rft_dat=%3Cproquest_osti_%3E2838922002%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838922002&rft_id=info:pmid/&rfr_iscdi=true |