Diagnosing Near-Surface Model Errors with Candidate Physics Parameterization Schemes for the Multiphysics Rapid Refresh Forecast System (RRFS) Ensemble during Winter over the Northeastern United States and Southern Great Plains
During the winter of 2020/21 an ensemble of FV3-LAM forecasts was produced over the contiguous United States for the Winter Weather Experiment using five physics suites. These forecasts are evaluated with the goal of optimizing physics parameterizations within the future operational Rapid Refresh Fo...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2023-01, Vol.151 (1), p.39-61 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | Monthly weather review |
container_volume | 151 |
creator | Hu, Xiao-Ming Park, Jun Supinie, Timothy Snook, Nathan A. Xue, Ming Brewster, Keith A. Brotzge, Jerald Carley, Jacob R. |
description | During the winter of 2020/21 an ensemble of FV3-LAM forecasts was produced over the contiguous United States for the Winter Weather Experiment using five physics suites. These forecasts are evaluated with the goal of optimizing physics parameterizations within the future operational Rapid Refresh Forecast System (RRFS) in the Unified Forecast System (UFS) realm and for selecting suitable physics suites for a multiphysics RRFS ensemble. The five physics suites have different combinations of land surface models (LSMs), planetary boundary layer (PBL) parameterizations, and surface layer schemes, chosen from those used in current and possible future operational systems and likely to be supported in the operational UFS. Full-season evaluation reveals a persistent near-surface cold bias in the U.S. Northeast from one suite and a nighttime warm bias in the southern Great Plains in another suite, while other suites have smaller biases. A representative case is chosen to diagnose the cause for each of these biases using sensitivity simulations with different physics combinations or modified parameters and verified with additional mesonet observations. The cold bias in the Northeast is attributed to aspects of the Noah-MP LSM over snow cover, where Noah-MP simulates lower soil water content, and thus lower thermal conductivity than other LSMs, leading to less upward ground heat flux during nighttime and consequently lower surface temperature. The nighttime warm bias found in the southern Great Plains is attributed to overestimation of vertical mixing in the
K
-profile-based eddy-diffusivity mass-flux (K-EDMF) PBL scheme and insufficient land–atmospheric coupling from the GFS surface layer scheme over short vegetation. A few key parameters driving these systematic biases are identified. |
doi_str_mv | 10.1175/MWR-D-22-0085.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2421768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807030416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-4e9c2d2d2d37e50da9f764e0f8b432cc8148926d17733d7588ca67bf4fb7d2373</originalsourceid><addsrcrecordid>eNotkU1v1DAQhiMEEkvhzHUEFziktR0nzh7RfhSktqw2VD1aXnvSuMraW9sBLX-XP4JXW81hDvPMq0d6i-IjJZeUivrq9mFbLkvGSkLa-pK-Kma0ZqQkfF69LmaEMFGShvO3xbsYnwghTcPZrPi3tOrR-WjdI9yhCmU3hV5phFtvcIRVCD5E-GPTAAvljDUqIWyGY7Q6wkYFtceEwf5VyXoHnR5wjxF6HyANOWQakz280Ft1sAa22AeMA6x9QK1igu4YE-7hy3a77r7CykXc70YEM4WT04N1OR_8bzwn3vmQV_7D4ODe2YQGupSlImQ96PyUz_l0HVAl2IzKuvi-eNOrMeKHl31R3K9Xvxbfy5uf1z8W325KzWqSSo5zzcxpKoE1MWrei4Yj6dsdr5jWLeXtnDWGClFVRtRtq1Ujdj3vd8KwSlQXxadzro_JyqiznB60dw51kowzKpo2Q5_P0CH45wljkk9-Ci57SdYSQSrCaZOpqzOlg48xYC8Pwe5VOEpK5KlumeuWS8mYPNUtafUf8rih2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807030416</pqid></control><display><type>article</type><title>Diagnosing Near-Surface Model Errors with Candidate Physics Parameterization Schemes for the Multiphysics Rapid Refresh Forecast System (RRFS) Ensemble during Winter over the Northeastern United States and Southern Great Plains</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hu, Xiao-Ming ; Park, Jun ; Supinie, Timothy ; Snook, Nathan A. ; Xue, Ming ; Brewster, Keith A. ; Brotzge, Jerald ; Carley, Jacob R.</creator><creatorcontrib>Hu, Xiao-Ming ; Park, Jun ; Supinie, Timothy ; Snook, Nathan A. ; Xue, Ming ; Brewster, Keith A. ; Brotzge, Jerald ; Carley, Jacob R. ; Univ. of Oklahoma, Norman, OK (United States)</creatorcontrib><description>During the winter of 2020/21 an ensemble of FV3-LAM forecasts was produced over the contiguous United States for the Winter Weather Experiment using five physics suites. These forecasts are evaluated with the goal of optimizing physics parameterizations within the future operational Rapid Refresh Forecast System (RRFS) in the Unified Forecast System (UFS) realm and for selecting suitable physics suites for a multiphysics RRFS ensemble. The five physics suites have different combinations of land surface models (LSMs), planetary boundary layer (PBL) parameterizations, and surface layer schemes, chosen from those used in current and possible future operational systems and likely to be supported in the operational UFS. Full-season evaluation reveals a persistent near-surface cold bias in the U.S. Northeast from one suite and a nighttime warm bias in the southern Great Plains in another suite, while other suites have smaller biases. A representative case is chosen to diagnose the cause for each of these biases using sensitivity simulations with different physics combinations or modified parameters and verified with additional mesonet observations. The cold bias in the Northeast is attributed to aspects of the Noah-MP LSM over snow cover, where Noah-MP simulates lower soil water content, and thus lower thermal conductivity than other LSMs, leading to less upward ground heat flux during nighttime and consequently lower surface temperature. The nighttime warm bias found in the southern Great Plains is attributed to overestimation of vertical mixing in the
K
-profile-based eddy-diffusivity mass-flux (K-EDMF) PBL scheme and insufficient land–atmospheric coupling from the GFS surface layer scheme over short vegetation. A few key parameters driving these systematic biases are identified.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-22-0085.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Atmospheric models ; Bias ; Boundary layers ; Ensemble forecasting ; Experiments ; Heat flux ; Heat transfer ; Land surface models ; Mathematical models ; Meteorology & Atmospheric Sciences ; Moisture content ; Night ; Night-time ; Nighttime ; Parameter identification ; Parameter modification ; Parameter sensitivity ; Parameterization ; Parameters ; Physics ; Planetary boundary layer ; Radiation ; Simulation ; Snow cover ; Soil water ; Surface boundary layer ; Surface layers ; Surface temperature ; Thermal conductivity ; Vegetation ; Vertical mixing ; Water content ; Weather forecasting ; Winter ; Winter weather</subject><ispartof>Monthly weather review, 2023-01, Vol.151 (1), p.39-61</ispartof><rights>Copyright American Meteorological Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-4e9c2d2d2d37e50da9f764e0f8b432cc8148926d17733d7588ca67bf4fb7d2373</cites><orcidid>0000-0002-0769-5090 ; 0000000207695090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3668,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2421768$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Xiao-Ming</creatorcontrib><creatorcontrib>Park, Jun</creatorcontrib><creatorcontrib>Supinie, Timothy</creatorcontrib><creatorcontrib>Snook, Nathan A.</creatorcontrib><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Brewster, Keith A.</creatorcontrib><creatorcontrib>Brotzge, Jerald</creatorcontrib><creatorcontrib>Carley, Jacob R.</creatorcontrib><creatorcontrib>Univ. of Oklahoma, Norman, OK (United States)</creatorcontrib><title>Diagnosing Near-Surface Model Errors with Candidate Physics Parameterization Schemes for the Multiphysics Rapid Refresh Forecast System (RRFS) Ensemble during Winter over the Northeastern United States and Southern Great Plains</title><title>Monthly weather review</title><description>During the winter of 2020/21 an ensemble of FV3-LAM forecasts was produced over the contiguous United States for the Winter Weather Experiment using five physics suites. These forecasts are evaluated with the goal of optimizing physics parameterizations within the future operational Rapid Refresh Forecast System (RRFS) in the Unified Forecast System (UFS) realm and for selecting suitable physics suites for a multiphysics RRFS ensemble. The five physics suites have different combinations of land surface models (LSMs), planetary boundary layer (PBL) parameterizations, and surface layer schemes, chosen from those used in current and possible future operational systems and likely to be supported in the operational UFS. Full-season evaluation reveals a persistent near-surface cold bias in the U.S. Northeast from one suite and a nighttime warm bias in the southern Great Plains in another suite, while other suites have smaller biases. A representative case is chosen to diagnose the cause for each of these biases using sensitivity simulations with different physics combinations or modified parameters and verified with additional mesonet observations. The cold bias in the Northeast is attributed to aspects of the Noah-MP LSM over snow cover, where Noah-MP simulates lower soil water content, and thus lower thermal conductivity than other LSMs, leading to less upward ground heat flux during nighttime and consequently lower surface temperature. The nighttime warm bias found in the southern Great Plains is attributed to overestimation of vertical mixing in the
K
-profile-based eddy-diffusivity mass-flux (K-EDMF) PBL scheme and insufficient land–atmospheric coupling from the GFS surface layer scheme over short vegetation. A few key parameters driving these systematic biases are identified.</description><subject>Atmospheric models</subject><subject>Bias</subject><subject>Boundary layers</subject><subject>Ensemble forecasting</subject><subject>Experiments</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Land surface models</subject><subject>Mathematical models</subject><subject>Meteorology & Atmospheric Sciences</subject><subject>Moisture content</subject><subject>Night</subject><subject>Night-time</subject><subject>Nighttime</subject><subject>Parameter identification</subject><subject>Parameter modification</subject><subject>Parameter sensitivity</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Physics</subject><subject>Planetary boundary layer</subject><subject>Radiation</subject><subject>Simulation</subject><subject>Snow cover</subject><subject>Soil water</subject><subject>Surface boundary layer</subject><subject>Surface layers</subject><subject>Surface temperature</subject><subject>Thermal conductivity</subject><subject>Vegetation</subject><subject>Vertical mixing</subject><subject>Water content</subject><subject>Weather forecasting</subject><subject>Winter</subject><subject>Winter weather</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkU1v1DAQhiMEEkvhzHUEFziktR0nzh7RfhSktqw2VD1aXnvSuMraW9sBLX-XP4JXW81hDvPMq0d6i-IjJZeUivrq9mFbLkvGSkLa-pK-Kma0ZqQkfF69LmaEMFGShvO3xbsYnwghTcPZrPi3tOrR-WjdI9yhCmU3hV5phFtvcIRVCD5E-GPTAAvljDUqIWyGY7Q6wkYFtceEwf5VyXoHnR5wjxF6HyANOWQakz280Ft1sAa22AeMA6x9QK1igu4YE-7hy3a77r7CykXc70YEM4WT04N1OR_8bzwn3vmQV_7D4ODe2YQGupSlImQ96PyUz_l0HVAl2IzKuvi-eNOrMeKHl31R3K9Xvxbfy5uf1z8W325KzWqSSo5zzcxpKoE1MWrei4Yj6dsdr5jWLeXtnDWGClFVRtRtq1Ujdj3vd8KwSlQXxadzro_JyqiznB60dw51kowzKpo2Q5_P0CH45wljkk9-Ci57SdYSQSrCaZOpqzOlg48xYC8Pwe5VOEpK5KlumeuWS8mYPNUtafUf8rih2g</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Hu, Xiao-Ming</creator><creator>Park, Jun</creator><creator>Supinie, Timothy</creator><creator>Snook, Nathan A.</creator><creator>Xue, Ming</creator><creator>Brewster, Keith A.</creator><creator>Brotzge, Jerald</creator><creator>Carley, Jacob R.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0769-5090</orcidid><orcidid>https://orcid.org/0000000207695090</orcidid></search><sort><creationdate>202301</creationdate><title>Diagnosing Near-Surface Model Errors with Candidate Physics Parameterization Schemes for the Multiphysics Rapid Refresh Forecast System (RRFS) Ensemble during Winter over the Northeastern United States and Southern Great Plains</title><author>Hu, Xiao-Ming ; Park, Jun ; Supinie, Timothy ; Snook, Nathan A. ; Xue, Ming ; Brewster, Keith A. ; Brotzge, Jerald ; Carley, Jacob R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-4e9c2d2d2d37e50da9f764e0f8b432cc8148926d17733d7588ca67bf4fb7d2373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmospheric models</topic><topic>Bias</topic><topic>Boundary layers</topic><topic>Ensemble forecasting</topic><topic>Experiments</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Land surface models</topic><topic>Mathematical models</topic><topic>Meteorology & Atmospheric Sciences</topic><topic>Moisture content</topic><topic>Night</topic><topic>Night-time</topic><topic>Nighttime</topic><topic>Parameter identification</topic><topic>Parameter modification</topic><topic>Parameter sensitivity</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Physics</topic><topic>Planetary boundary layer</topic><topic>Radiation</topic><topic>Simulation</topic><topic>Snow cover</topic><topic>Soil water</topic><topic>Surface boundary layer</topic><topic>Surface layers</topic><topic>Surface temperature</topic><topic>Thermal conductivity</topic><topic>Vegetation</topic><topic>Vertical mixing</topic><topic>Water content</topic><topic>Weather forecasting</topic><topic>Winter</topic><topic>Winter weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiao-Ming</creatorcontrib><creatorcontrib>Park, Jun</creatorcontrib><creatorcontrib>Supinie, Timothy</creatorcontrib><creatorcontrib>Snook, Nathan A.</creatorcontrib><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Brewster, Keith A.</creatorcontrib><creatorcontrib>Brotzge, Jerald</creatorcontrib><creatorcontrib>Carley, Jacob R.</creatorcontrib><creatorcontrib>Univ. of Oklahoma, Norman, OK (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xiao-Ming</au><au>Park, Jun</au><au>Supinie, Timothy</au><au>Snook, Nathan A.</au><au>Xue, Ming</au><au>Brewster, Keith A.</au><au>Brotzge, Jerald</au><au>Carley, Jacob R.</au><aucorp>Univ. of Oklahoma, Norman, OK (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosing Near-Surface Model Errors with Candidate Physics Parameterization Schemes for the Multiphysics Rapid Refresh Forecast System (RRFS) Ensemble during Winter over the Northeastern United States and Southern Great Plains</atitle><jtitle>Monthly weather review</jtitle><date>2023-01</date><risdate>2023</risdate><volume>151</volume><issue>1</issue><spage>39</spage><epage>61</epage><pages>39-61</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>During the winter of 2020/21 an ensemble of FV3-LAM forecasts was produced over the contiguous United States for the Winter Weather Experiment using five physics suites. These forecasts are evaluated with the goal of optimizing physics parameterizations within the future operational Rapid Refresh Forecast System (RRFS) in the Unified Forecast System (UFS) realm and for selecting suitable physics suites for a multiphysics RRFS ensemble. The five physics suites have different combinations of land surface models (LSMs), planetary boundary layer (PBL) parameterizations, and surface layer schemes, chosen from those used in current and possible future operational systems and likely to be supported in the operational UFS. Full-season evaluation reveals a persistent near-surface cold bias in the U.S. Northeast from one suite and a nighttime warm bias in the southern Great Plains in another suite, while other suites have smaller biases. A representative case is chosen to diagnose the cause for each of these biases using sensitivity simulations with different physics combinations or modified parameters and verified with additional mesonet observations. The cold bias in the Northeast is attributed to aspects of the Noah-MP LSM over snow cover, where Noah-MP simulates lower soil water content, and thus lower thermal conductivity than other LSMs, leading to less upward ground heat flux during nighttime and consequently lower surface temperature. The nighttime warm bias found in the southern Great Plains is attributed to overestimation of vertical mixing in the
K
-profile-based eddy-diffusivity mass-flux (K-EDMF) PBL scheme and insufficient land–atmospheric coupling from the GFS surface layer scheme over short vegetation. A few key parameters driving these systematic biases are identified.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-22-0085.1</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-0769-5090</orcidid><orcidid>https://orcid.org/0000000207695090</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-0644 |
ispartof | Monthly weather review, 2023-01, Vol.151 (1), p.39-61 |
issn | 0027-0644 1520-0493 |
language | eng |
recordid | cdi_osti_scitechconnect_2421768 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Atmospheric models Bias Boundary layers Ensemble forecasting Experiments Heat flux Heat transfer Land surface models Mathematical models Meteorology & Atmospheric Sciences Moisture content Night Night-time Nighttime Parameter identification Parameter modification Parameter sensitivity Parameterization Parameters Physics Planetary boundary layer Radiation Simulation Snow cover Soil water Surface boundary layer Surface layers Surface temperature Thermal conductivity Vegetation Vertical mixing Water content Weather forecasting Winter Winter weather |
title | Diagnosing Near-Surface Model Errors with Candidate Physics Parameterization Schemes for the Multiphysics Rapid Refresh Forecast System (RRFS) Ensemble during Winter over the Northeastern United States and Southern Great Plains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosing%20Near-Surface%20Model%20Errors%20with%20Candidate%20Physics%20Parameterization%20Schemes%20for%20the%20Multiphysics%20Rapid%20Refresh%20Forecast%20System%20(RRFS)%20Ensemble%20during%20Winter%20over%20the%20Northeastern%20United%20States%20and%20Southern%20Great%20Plains&rft.jtitle=Monthly%20weather%20review&rft.au=Hu,%20Xiao-Ming&rft.aucorp=Univ.%20of%20Oklahoma,%20Norman,%20OK%20(United%20States)&rft.date=2023-01&rft.volume=151&rft.issue=1&rft.spage=39&rft.epage=61&rft.pages=39-61&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-22-0085.1&rft_dat=%3Cproquest_osti_%3E2807030416%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807030416&rft_id=info:pmid/&rfr_iscdi=true |