Nanocrystal phononics

Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2023-02, Vol.22 (2), p.161-169
Hauptverfasser: Jansen, Maximilian, Tisdale, William A., Wood, Vanessa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 2
container_start_page 161
container_title Nature materials
container_volume 22
creator Jansen, Maximilian
Tisdale, William A.
Wood, Vanessa
description Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications. With the ability to engineer vibrations in the hypersonic regime through the choice of nanocrystal and linker composition, as well as by controlling their size, shape and chemical interactions, such superstructures offer new opportunities for phononic crystals, acoustic metamaterials and optomechanical systems. Colloidal nanocrystals can form into periodic superlattices exhibiting collective vibrations from the correlated motion of the nanocrystals. This Perspective discusses such collective vibrations and their as-of-yet untapped potential applications for phononic crystals, acoustic metamaterials and optomechanical systems.
doi_str_mv 10.1038/s41563-022-01438-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2421700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770120723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-527b6c5212b75259f45c28f11c33309527d61a02a38ac8eca8ab3cd200c17bf33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EolAYWRgQgoUlcHd2bHdEFV9SBQvMluM6NFVrlzgZ-u9JSQGJgelOuufe0z2MnSJcI3B9kwTmkmdAlAEKrjOxww5QKJkJKWF32yMSDdhhSnMAwjyX-2zApQLSWh6wk2cboqvXqbGL89Ushhgql47YXmkXyR9v65C93d-9jh-zycvD0_h2kjkB1GQ5qUK6nJAKlVM-KkXuSJeIjnMOo248lWiBLNfWae-stgV3UwJwqIqS8yG76HNjaiqTXNV4N3MxBO8aQ4JQAXTQVQ-t6vjR-tSYZZWcXyxs8LFNhpQCJFC0ybv8g85jW4fuhQ2Fmoj0qKOop1wdU6p9aVZ1tbT12iCYjVnTmzWdWfNl1ohu6Wwb3RZLP_1Z-VbZAbwHUjcK777-vf1P7Cc-u3-V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771822289</pqid></control><display><type>article</type><title>Nanocrystal phononics</title><source>Nature</source><source>SpringerNature Journals</source><creator>Jansen, Maximilian ; Tisdale, William A. ; Wood, Vanessa</creator><creatorcontrib>Jansen, Maximilian ; Tisdale, William A. ; Wood, Vanessa ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications. With the ability to engineer vibrations in the hypersonic regime through the choice of nanocrystal and linker composition, as well as by controlling their size, shape and chemical interactions, such superstructures offer new opportunities for phononic crystals, acoustic metamaterials and optomechanical systems. Colloidal nanocrystals can form into periodic superlattices exhibiting collective vibrations from the correlated motion of the nanocrystals. This Perspective discusses such collective vibrations and their as-of-yet untapped potential applications for phononic crystals, acoustic metamaterials and optomechanical systems.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-022-01438-4</identifier><identifier>PMID: 36702886</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/301/357/1015 ; 639/301/357/404 ; 639/766/25/3927 ; 639/925/357/354 ; Biomaterials ; Chemical interactions ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystals ; Materials Science ; Metamaterials ; Nanocrystals ; Nanotechnology ; Optical and Electronic Materials ; Perspective ; Physics ; Superlattices ; Superstructures</subject><ispartof>Nature materials, 2023-02, Vol.22 (2), p.161-169</ispartof><rights>Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-527b6c5212b75259f45c28f11c33309527d61a02a38ac8eca8ab3cd200c17bf33</citedby><cites>FETCH-LOGICAL-c402t-527b6c5212b75259f45c28f11c33309527d61a02a38ac8eca8ab3cd200c17bf33</cites><orcidid>0000-0001-6435-0227 ; 0000-0002-6615-5342 ; 0000-0003-0610-5439 ; 0000000164350227 ; 0000000306105439 ; 0000000266155342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-022-01438-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-022-01438-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36702886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2421700$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jansen, Maximilian</creatorcontrib><creatorcontrib>Tisdale, William A.</creatorcontrib><creatorcontrib>Wood, Vanessa</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Nanocrystal phononics</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications. With the ability to engineer vibrations in the hypersonic regime through the choice of nanocrystal and linker composition, as well as by controlling their size, shape and chemical interactions, such superstructures offer new opportunities for phononic crystals, acoustic metamaterials and optomechanical systems. Colloidal nanocrystals can form into periodic superlattices exhibiting collective vibrations from the correlated motion of the nanocrystals. This Perspective discusses such collective vibrations and their as-of-yet untapped potential applications for phononic crystals, acoustic metamaterials and optomechanical systems.</description><subject>639/301/1005</subject><subject>639/301/357/1015</subject><subject>639/301/357/404</subject><subject>639/766/25/3927</subject><subject>639/925/357/354</subject><subject>Biomaterials</subject><subject>Chemical interactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Materials Science</subject><subject>Metamaterials</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Perspective</subject><subject>Physics</subject><subject>Superlattices</subject><subject>Superstructures</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EolAYWRgQgoUlcHd2bHdEFV9SBQvMluM6NFVrlzgZ-u9JSQGJgelOuufe0z2MnSJcI3B9kwTmkmdAlAEKrjOxww5QKJkJKWF32yMSDdhhSnMAwjyX-2zApQLSWh6wk2cboqvXqbGL89Ushhgql47YXmkXyR9v65C93d-9jh-zycvD0_h2kjkB1GQ5qUK6nJAKlVM-KkXuSJeIjnMOo248lWiBLNfWae-stgV3UwJwqIqS8yG76HNjaiqTXNV4N3MxBO8aQ4JQAXTQVQ-t6vjR-tSYZZWcXyxs8LFNhpQCJFC0ybv8g85jW4fuhQ2Fmoj0qKOop1wdU6p9aVZ1tbT12iCYjVnTmzWdWfNl1ohu6Wwb3RZLP_1Z-VbZAbwHUjcK777-vf1P7Cc-u3-V</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Jansen, Maximilian</creator><creator>Tisdale, William A.</creator><creator>Wood, Vanessa</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6435-0227</orcidid><orcidid>https://orcid.org/0000-0002-6615-5342</orcidid><orcidid>https://orcid.org/0000-0003-0610-5439</orcidid><orcidid>https://orcid.org/0000000164350227</orcidid><orcidid>https://orcid.org/0000000306105439</orcidid><orcidid>https://orcid.org/0000000266155342</orcidid></search><sort><creationdate>20230201</creationdate><title>Nanocrystal phononics</title><author>Jansen, Maximilian ; Tisdale, William A. ; Wood, Vanessa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-527b6c5212b75259f45c28f11c33309527d61a02a38ac8eca8ab3cd200c17bf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/1005</topic><topic>639/301/357/1015</topic><topic>639/301/357/404</topic><topic>639/766/25/3927</topic><topic>639/925/357/354</topic><topic>Biomaterials</topic><topic>Chemical interactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Materials Science</topic><topic>Metamaterials</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Perspective</topic><topic>Physics</topic><topic>Superlattices</topic><topic>Superstructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jansen, Maximilian</creatorcontrib><creatorcontrib>Tisdale, William A.</creatorcontrib><creatorcontrib>Wood, Vanessa</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jansen, Maximilian</au><au>Tisdale, William A.</au><au>Wood, Vanessa</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocrystal phononics</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>22</volume><issue>2</issue><spage>161</spage><epage>169</epage><pages>161-169</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications. With the ability to engineer vibrations in the hypersonic regime through the choice of nanocrystal and linker composition, as well as by controlling their size, shape and chemical interactions, such superstructures offer new opportunities for phononic crystals, acoustic metamaterials and optomechanical systems. Colloidal nanocrystals can form into periodic superlattices exhibiting collective vibrations from the correlated motion of the nanocrystals. This Perspective discusses such collective vibrations and their as-of-yet untapped potential applications for phononic crystals, acoustic metamaterials and optomechanical systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36702886</pmid><doi>10.1038/s41563-022-01438-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6435-0227</orcidid><orcidid>https://orcid.org/0000-0002-6615-5342</orcidid><orcidid>https://orcid.org/0000-0003-0610-5439</orcidid><orcidid>https://orcid.org/0000000164350227</orcidid><orcidid>https://orcid.org/0000000306105439</orcidid><orcidid>https://orcid.org/0000000266155342</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2023-02, Vol.22 (2), p.161-169
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_2421700
source Nature; SpringerNature Journals
subjects 639/301/1005
639/301/357/1015
639/301/357/404
639/766/25/3927
639/925/357/354
Biomaterials
Chemical interactions
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Crystals
Materials Science
Metamaterials
Nanocrystals
Nanotechnology
Optical and Electronic Materials
Perspective
Physics
Superlattices
Superstructures
title Nanocrystal phononics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocrystal%20phononics&rft.jtitle=Nature%20materials&rft.au=Jansen,%20Maximilian&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2023-02-01&rft.volume=22&rft.issue=2&rft.spage=161&rft.epage=169&rft.pages=161-169&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-022-01438-4&rft_dat=%3Cproquest_osti_%3E2770120723%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771822289&rft_id=info:pmid/36702886&rfr_iscdi=true