Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure

Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-07, Vol.14 (29), p.6610-6619
Hauptverfasser: Chen, Michael S., Mao, Yuezhi, Snider, Andrew, Gupta, Prachi, Montoya-Castillo, Andrés, Zuehlsdorff, Tim J., Isborn, Christine M., Markland, Thomas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6619
container_issue 29
container_start_page 6610
container_title The journal of physical chemistry letters
container_volume 14
creator Chen, Michael S.
Mao, Yuezhi
Snider, Andrew
Gupta, Prachi
Montoya-Castillo, Andrés
Zuehlsdorff, Tim J.
Isborn, Christine M.
Markland, Thomas E.
description Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.
doi_str_mv 10.1021/acs.jpclett.3c01444
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2421472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839253445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-51047d0aab09e4b2cfeb2bcecd5cf94ffe207cfb051cf1206131f32f6e345aea3</originalsourceid><addsrcrecordid>eNp9kV9v0zAUxSMEYmPwCZCQxRMv6WzHaVreWNX9kYqGKHuOnJvrxpNjB9uZ1I_JN8JNu4knnmLp_M7J0T1Z9pHRGaOcXUoIs8cBDMY4K4AyIcSr7JwtxSKv2KJ8_c_7LHsXwiOl8yVdVG-zs6IS5ZKX_Dz7szYj6FZGbXckdkh-OoPEKXK7b73boSVXzrYHUdtJvx-iBmnIdkCI3gVww_7AH7StM08yYktuPCbntRmdxwBoI_nhXcQUseq8693QJeEreQiH4O8SOm2RbFB6O9VwZB2ibIwO3ZR71w_OR2nh2EzvunyDT2jI2kwlrAayjX6EOHp8n71R0gT8cPpeZA_X61-r23xzf3O3-rbJZVHxmJeMiqqlUjZ0iaLhoLDhDSC0JailUAo5rUA1tGSgGKdzVjBVcDXHQpQSZXGRfT7muhB1HUBHhA6ctalSzQVnouIJ-nKEBu9-jxhi3et0EGOkRTeGmi-KtEMhRJnQ4ohCumrwqOrB6176fc1ofRi8ToPXp8Hr0-DJ9en0g7HpsX3xPC-cgMsjMLnd6G06yn8j_wIdYr85</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839253445</pqid></control><display><type>article</type><title>Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure</title><source>American Chemical Society Journals</source><creator>Chen, Michael S. ; Mao, Yuezhi ; Snider, Andrew ; Gupta, Prachi ; Montoya-Castillo, Andrés ; Zuehlsdorff, Tim J. ; Isborn, Christine M. ; Markland, Thomas E.</creator><creatorcontrib>Chen, Michael S. ; Mao, Yuezhi ; Snider, Andrew ; Gupta, Prachi ; Montoya-Castillo, Andrés ; Zuehlsdorff, Tim J. ; Isborn, Christine M. ; Markland, Thomas E. ; Univ. of California, Oakland, CA (United States) ; Univ. of California, Merced, CA (United States)</creatorcontrib><description>Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c01444</identifier><identifier>PMID: 37459252</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science ; Physical Insights into Light Interacting with Matter ; Physics ; Science &amp; Technology - Other Topics</subject><ispartof>The journal of physical chemistry letters, 2023-07, Vol.14 (29), p.6610-6619</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-51047d0aab09e4b2cfeb2bcecd5cf94ffe207cfb051cf1206131f32f6e345aea3</citedby><cites>FETCH-LOGICAL-a372t-51047d0aab09e4b2cfeb2bcecd5cf94ffe207cfb051cf1206131f32f6e345aea3</cites><orcidid>0000-0001-5362-4333 ; 0000-0002-4905-9113 ; 0000-0002-2747-0518 ; 0000-0003-3037-3695 ; 0000-0002-6960-756X ; 0000-0003-0767-4238 ; 0000000153624333 ; 0000000249059113 ; 0000000330373695 ; 0000000227470518 ; 000000026960756X ; 0000000307674238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c01444$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c01444$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37459252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2421472$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Michael S.</creatorcontrib><creatorcontrib>Mao, Yuezhi</creatorcontrib><creatorcontrib>Snider, Andrew</creatorcontrib><creatorcontrib>Gupta, Prachi</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><creatorcontrib>Zuehlsdorff, Tim J.</creatorcontrib><creatorcontrib>Isborn, Christine M.</creatorcontrib><creatorcontrib>Markland, Thomas E.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Merced, CA (United States)</creatorcontrib><title>Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Physical Insights into Light Interacting with Matter</subject><subject>Physics</subject><subject>Science &amp; Technology - Other Topics</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV9v0zAUxSMEYmPwCZCQxRMv6WzHaVreWNX9kYqGKHuOnJvrxpNjB9uZ1I_JN8JNu4knnmLp_M7J0T1Z9pHRGaOcXUoIs8cBDMY4K4AyIcSr7JwtxSKv2KJ8_c_7LHsXwiOl8yVdVG-zs6IS5ZKX_Dz7szYj6FZGbXckdkh-OoPEKXK7b73boSVXzrYHUdtJvx-iBmnIdkCI3gVww_7AH7StM08yYktuPCbntRmdxwBoI_nhXcQUseq8693QJeEreQiH4O8SOm2RbFB6O9VwZB2ibIwO3ZR71w_OR2nh2EzvunyDT2jI2kwlrAayjX6EOHp8n71R0gT8cPpeZA_X61-r23xzf3O3-rbJZVHxmJeMiqqlUjZ0iaLhoLDhDSC0JailUAo5rUA1tGSgGKdzVjBVcDXHQpQSZXGRfT7muhB1HUBHhA6ctalSzQVnouIJ-nKEBu9-jxhi3et0EGOkRTeGmi-KtEMhRJnQ4ohCumrwqOrB6176fc1ofRi8ToPXp8Hr0-DJ9en0g7HpsX3xPC-cgMsjMLnd6G06yn8j_wIdYr85</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Chen, Michael S.</creator><creator>Mao, Yuezhi</creator><creator>Snider, Andrew</creator><creator>Gupta, Prachi</creator><creator>Montoya-Castillo, Andrés</creator><creator>Zuehlsdorff, Tim J.</creator><creator>Isborn, Christine M.</creator><creator>Markland, Thomas E.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5362-4333</orcidid><orcidid>https://orcid.org/0000-0002-4905-9113</orcidid><orcidid>https://orcid.org/0000-0002-2747-0518</orcidid><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid><orcidid>https://orcid.org/0000-0002-6960-756X</orcidid><orcidid>https://orcid.org/0000-0003-0767-4238</orcidid><orcidid>https://orcid.org/0000000153624333</orcidid><orcidid>https://orcid.org/0000000249059113</orcidid><orcidid>https://orcid.org/0000000330373695</orcidid><orcidid>https://orcid.org/0000000227470518</orcidid><orcidid>https://orcid.org/000000026960756X</orcidid><orcidid>https://orcid.org/0000000307674238</orcidid></search><sort><creationdate>20230727</creationdate><title>Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure</title><author>Chen, Michael S. ; Mao, Yuezhi ; Snider, Andrew ; Gupta, Prachi ; Montoya-Castillo, Andrés ; Zuehlsdorff, Tim J. ; Isborn, Christine M. ; Markland, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-51047d0aab09e4b2cfeb2bcecd5cf94ffe207cfb051cf1206131f32f6e345aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Physical Insights into Light Interacting with Matter</topic><topic>Physics</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Michael S.</creatorcontrib><creatorcontrib>Mao, Yuezhi</creatorcontrib><creatorcontrib>Snider, Andrew</creatorcontrib><creatorcontrib>Gupta, Prachi</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><creatorcontrib>Zuehlsdorff, Tim J.</creatorcontrib><creatorcontrib>Isborn, Christine M.</creatorcontrib><creatorcontrib>Markland, Thomas E.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Merced, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Michael S.</au><au>Mao, Yuezhi</au><au>Snider, Andrew</au><au>Gupta, Prachi</au><au>Montoya-Castillo, Andrés</au><au>Zuehlsdorff, Tim J.</au><au>Isborn, Christine M.</au><au>Markland, Thomas E.</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>Univ. of California, Merced, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-07-27</date><risdate>2023</risdate><volume>14</volume><issue>29</issue><spage>6610</spage><epage>6619</epage><pages>6610-6619</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37459252</pmid><doi>10.1021/acs.jpclett.3c01444</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5362-4333</orcidid><orcidid>https://orcid.org/0000-0002-4905-9113</orcidid><orcidid>https://orcid.org/0000-0002-2747-0518</orcidid><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid><orcidid>https://orcid.org/0000-0002-6960-756X</orcidid><orcidid>https://orcid.org/0000-0003-0767-4238</orcidid><orcidid>https://orcid.org/0000000153624333</orcidid><orcidid>https://orcid.org/0000000249059113</orcidid><orcidid>https://orcid.org/0000000330373695</orcidid><orcidid>https://orcid.org/0000000227470518</orcidid><orcidid>https://orcid.org/000000026960756X</orcidid><orcidid>https://orcid.org/0000000307674238</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2023-07, Vol.14 (29), p.6610-6619
issn 1948-7185
1948-7185
language eng
recordid cdi_osti_scitechconnect_2421472
source American Chemical Society Journals
subjects Chemistry
Materials Science
Physical Insights into Light Interacting with Matter
Physics
Science & Technology - Other Topics
title Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Role%20of%20Hydrogen%20Bonding%20in%20the%20Optical%20Spectroscopy%20of%20the%20Solvated%20Green%20Fluorescent%20Protein%20Chromophore:%20Using%20Machine%20Learning%20to%20Establish%20the%20Importance%20of%20High-Level%20Electronic%20Structure&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Chen,%20Michael%20S.&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2023-07-27&rft.volume=14&rft.issue=29&rft.spage=6610&rft.epage=6619&rft.pages=6610-6619&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c01444&rft_dat=%3Cproquest_osti_%3E2839253445%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839253445&rft_id=info:pmid/37459252&rfr_iscdi=true