Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure
Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large n...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2023-07, Vol.14 (29), p.6610-6619 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6619 |
---|---|
container_issue | 29 |
container_start_page | 6610 |
container_title | The journal of physical chemistry letters |
container_volume | 14 |
creator | Chen, Michael S. Mao, Yuezhi Snider, Andrew Gupta, Prachi Montoya-Castillo, Andrés Zuehlsdorff, Tim J. Isborn, Christine M. Markland, Thomas E. |
description | Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water. |
doi_str_mv | 10.1021/acs.jpclett.3c01444 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2421472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839253445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-51047d0aab09e4b2cfeb2bcecd5cf94ffe207cfb051cf1206131f32f6e345aea3</originalsourceid><addsrcrecordid>eNp9kV9v0zAUxSMEYmPwCZCQxRMv6WzHaVreWNX9kYqGKHuOnJvrxpNjB9uZ1I_JN8JNu4knnmLp_M7J0T1Z9pHRGaOcXUoIs8cBDMY4K4AyIcSr7JwtxSKv2KJ8_c_7LHsXwiOl8yVdVG-zs6IS5ZKX_Dz7szYj6FZGbXckdkh-OoPEKXK7b73boSVXzrYHUdtJvx-iBmnIdkCI3gVww_7AH7StM08yYktuPCbntRmdxwBoI_nhXcQUseq8693QJeEreQiH4O8SOm2RbFB6O9VwZB2ibIwO3ZR71w_OR2nh2EzvunyDT2jI2kwlrAayjX6EOHp8n71R0gT8cPpeZA_X61-r23xzf3O3-rbJZVHxmJeMiqqlUjZ0iaLhoLDhDSC0JailUAo5rUA1tGSgGKdzVjBVcDXHQpQSZXGRfT7muhB1HUBHhA6ctalSzQVnouIJ-nKEBu9-jxhi3et0EGOkRTeGmi-KtEMhRJnQ4ohCumrwqOrB6176fc1ofRi8ToPXp8Hr0-DJ9en0g7HpsX3xPC-cgMsjMLnd6G06yn8j_wIdYr85</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839253445</pqid></control><display><type>article</type><title>Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure</title><source>American Chemical Society Journals</source><creator>Chen, Michael S. ; Mao, Yuezhi ; Snider, Andrew ; Gupta, Prachi ; Montoya-Castillo, Andrés ; Zuehlsdorff, Tim J. ; Isborn, Christine M. ; Markland, Thomas E.</creator><creatorcontrib>Chen, Michael S. ; Mao, Yuezhi ; Snider, Andrew ; Gupta, Prachi ; Montoya-Castillo, Andrés ; Zuehlsdorff, Tim J. ; Isborn, Christine M. ; Markland, Thomas E. ; Univ. of California, Oakland, CA (United States) ; Univ. of California, Merced, CA (United States)</creatorcontrib><description>Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c01444</identifier><identifier>PMID: 37459252</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science ; Physical Insights into Light Interacting with Matter ; Physics ; Science & Technology - Other Topics</subject><ispartof>The journal of physical chemistry letters, 2023-07, Vol.14 (29), p.6610-6619</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-51047d0aab09e4b2cfeb2bcecd5cf94ffe207cfb051cf1206131f32f6e345aea3</citedby><cites>FETCH-LOGICAL-a372t-51047d0aab09e4b2cfeb2bcecd5cf94ffe207cfb051cf1206131f32f6e345aea3</cites><orcidid>0000-0001-5362-4333 ; 0000-0002-4905-9113 ; 0000-0002-2747-0518 ; 0000-0003-3037-3695 ; 0000-0002-6960-756X ; 0000-0003-0767-4238 ; 0000000153624333 ; 0000000249059113 ; 0000000330373695 ; 0000000227470518 ; 000000026960756X ; 0000000307674238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c01444$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c01444$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37459252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2421472$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Michael S.</creatorcontrib><creatorcontrib>Mao, Yuezhi</creatorcontrib><creatorcontrib>Snider, Andrew</creatorcontrib><creatorcontrib>Gupta, Prachi</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><creatorcontrib>Zuehlsdorff, Tim J.</creatorcontrib><creatorcontrib>Isborn, Christine M.</creatorcontrib><creatorcontrib>Markland, Thomas E.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Merced, CA (United States)</creatorcontrib><title>Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Physical Insights into Light Interacting with Matter</subject><subject>Physics</subject><subject>Science & Technology - Other Topics</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV9v0zAUxSMEYmPwCZCQxRMv6WzHaVreWNX9kYqGKHuOnJvrxpNjB9uZ1I_JN8JNu4knnmLp_M7J0T1Z9pHRGaOcXUoIs8cBDMY4K4AyIcSr7JwtxSKv2KJ8_c_7LHsXwiOl8yVdVG-zs6IS5ZKX_Dz7szYj6FZGbXckdkh-OoPEKXK7b73boSVXzrYHUdtJvx-iBmnIdkCI3gVww_7AH7StM08yYktuPCbntRmdxwBoI_nhXcQUseq8693QJeEreQiH4O8SOm2RbFB6O9VwZB2ibIwO3ZR71w_OR2nh2EzvunyDT2jI2kwlrAayjX6EOHp8n71R0gT8cPpeZA_X61-r23xzf3O3-rbJZVHxmJeMiqqlUjZ0iaLhoLDhDSC0JailUAo5rUA1tGSgGKdzVjBVcDXHQpQSZXGRfT7muhB1HUBHhA6ctalSzQVnouIJ-nKEBu9-jxhi3et0EGOkRTeGmi-KtEMhRJnQ4ohCumrwqOrB6176fc1ofRi8ToPXp8Hr0-DJ9en0g7HpsX3xPC-cgMsjMLnd6G06yn8j_wIdYr85</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Chen, Michael S.</creator><creator>Mao, Yuezhi</creator><creator>Snider, Andrew</creator><creator>Gupta, Prachi</creator><creator>Montoya-Castillo, Andrés</creator><creator>Zuehlsdorff, Tim J.</creator><creator>Isborn, Christine M.</creator><creator>Markland, Thomas E.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5362-4333</orcidid><orcidid>https://orcid.org/0000-0002-4905-9113</orcidid><orcidid>https://orcid.org/0000-0002-2747-0518</orcidid><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid><orcidid>https://orcid.org/0000-0002-6960-756X</orcidid><orcidid>https://orcid.org/0000-0003-0767-4238</orcidid><orcidid>https://orcid.org/0000000153624333</orcidid><orcidid>https://orcid.org/0000000249059113</orcidid><orcidid>https://orcid.org/0000000330373695</orcidid><orcidid>https://orcid.org/0000000227470518</orcidid><orcidid>https://orcid.org/000000026960756X</orcidid><orcidid>https://orcid.org/0000000307674238</orcidid></search><sort><creationdate>20230727</creationdate><title>Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure</title><author>Chen, Michael S. ; Mao, Yuezhi ; Snider, Andrew ; Gupta, Prachi ; Montoya-Castillo, Andrés ; Zuehlsdorff, Tim J. ; Isborn, Christine M. ; Markland, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-51047d0aab09e4b2cfeb2bcecd5cf94ffe207cfb051cf1206131f32f6e345aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Physical Insights into Light Interacting with Matter</topic><topic>Physics</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Michael S.</creatorcontrib><creatorcontrib>Mao, Yuezhi</creatorcontrib><creatorcontrib>Snider, Andrew</creatorcontrib><creatorcontrib>Gupta, Prachi</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><creatorcontrib>Zuehlsdorff, Tim J.</creatorcontrib><creatorcontrib>Isborn, Christine M.</creatorcontrib><creatorcontrib>Markland, Thomas E.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Merced, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Michael S.</au><au>Mao, Yuezhi</au><au>Snider, Andrew</au><au>Gupta, Prachi</au><au>Montoya-Castillo, Andrés</au><au>Zuehlsdorff, Tim J.</au><au>Isborn, Christine M.</au><au>Markland, Thomas E.</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>Univ. of California, Merced, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-07-27</date><risdate>2023</risdate><volume>14</volume><issue>29</issue><spage>6610</spage><epage>6619</epage><pages>6610-6619</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37459252</pmid><doi>10.1021/acs.jpclett.3c01444</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5362-4333</orcidid><orcidid>https://orcid.org/0000-0002-4905-9113</orcidid><orcidid>https://orcid.org/0000-0002-2747-0518</orcidid><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid><orcidid>https://orcid.org/0000-0002-6960-756X</orcidid><orcidid>https://orcid.org/0000-0003-0767-4238</orcidid><orcidid>https://orcid.org/0000000153624333</orcidid><orcidid>https://orcid.org/0000000249059113</orcidid><orcidid>https://orcid.org/0000000330373695</orcidid><orcidid>https://orcid.org/0000000227470518</orcidid><orcidid>https://orcid.org/000000026960756X</orcidid><orcidid>https://orcid.org/0000000307674238</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2023-07, Vol.14 (29), p.6610-6619 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_osti_scitechconnect_2421472 |
source | American Chemical Society Journals |
subjects | Chemistry Materials Science Physical Insights into Light Interacting with Matter Physics Science & Technology - Other Topics |
title | Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Role%20of%20Hydrogen%20Bonding%20in%20the%20Optical%20Spectroscopy%20of%20the%20Solvated%20Green%20Fluorescent%20Protein%20Chromophore:%20Using%20Machine%20Learning%20to%20Establish%20the%20Importance%20of%20High-Level%20Electronic%20Structure&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Chen,%20Michael%20S.&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2023-07-27&rft.volume=14&rft.issue=29&rft.spage=6610&rft.epage=6619&rft.pages=6610-6619&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c01444&rft_dat=%3Cproquest_osti_%3E2839253445%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839253445&rft_id=info:pmid/37459252&rfr_iscdi=true |