Entangled Photon Correlations Allow a Continuous-Wave Laser Diode to Measure Single-Photon, Time-Resolved Fluorescence

Fluorescence lifetime experiments are a standard approach for measuring excited-state dynamics and local environmental effects. Here, we show that entangled photon pairs produced from a continuous-wave (CW) laser diode can replicate pulsed laser experiments without phase modulation. As a proof of pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-06, Vol.14 (25), p.5805-5811
Hauptverfasser: Harper, Nathan, Hickam, Bryce P., He, Manni, Cushing, Scott K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5811
container_issue 25
container_start_page 5805
container_title The journal of physical chemistry letters
container_volume 14
creator Harper, Nathan
Hickam, Bryce P.
He, Manni
Cushing, Scott K.
description Fluorescence lifetime experiments are a standard approach for measuring excited-state dynamics and local environmental effects. Here, we show that entangled photon pairs produced from a continuous-wave (CW) laser diode can replicate pulsed laser experiments without phase modulation. As a proof of principle, picosecond fluorescence lifetimes of indocyanine green are measured in multiple environments. The use of entangled photons has three unique advantages. First, low-power CW laser diodes and entangled photon source design lead to straightforward on-chip integration for a direct path to distributable fluorescence lifetime measurements. Second, the entangled pair’s wavelength is easily tuned by adjusting the temperature or electric field, allowing a single source to cover octave bandwidths. Third, femtosecond temporal resolutions can be reached without requiring major advances in source technology or external phase modulation. Entangled photons could therefore provide increased accessibility to time-resolved fluorescence while also opening new scientific avenues in photosensitive and inherently quantum systems.
doi_str_mv 10.1021/acs.jpclett.3c01266
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2421452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827923504</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-aacb241395a1838566c5e3fe2938bcc72be5499f687ea89dce11a401cdfdcdc43</originalsourceid><addsrcrecordid>eNp9kUtvEzEURi1ERR_wC5CQxYoFk_oxD8-yCm1BCgJBEUvLuXOHunLs1PYE8e_rMGnFipUt6_uOr30Iec3ZgjPBzw2kxd0WHOa8kMC4aNtn5IT3tao6rprn_-yPyWlKd4y1PVPdC3IsOykVF-qE7C59Nv6Xw4F-vQ05eLoMMaIz2Qaf6IVz4Tc15dBn66cwpeqn2SFdmYSRfrBhQJoD_YwmTRHpd7tHVTPpPb2xG6y-YQpuV_hXbgoRE6AHfEmORuMSvjqsZ-TH1eXN8mO1-nL9aXmxqozsRK6MgbWouewbw5VUTdtCg3JE0Uu1BujEGpu678dWdWhUPwBybmrGYRgHGKCWZ-TtzA0pW53AZoRbCN4jZC1qwetGlNC7ObSN4X7ClPXGljGdMx7Li7VQouuFbNieJ-coxJBSxFFvo92Y-EdzpvdWdLGiD1b0wUppvTlcMK03ODx1HjWUwPkc-NsOU_TlU_6LfADD3Z0I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827923504</pqid></control><display><type>article</type><title>Entangled Photon Correlations Allow a Continuous-Wave Laser Diode to Measure Single-Photon, Time-Resolved Fluorescence</title><source>American Chemical Society Journals</source><creator>Harper, Nathan ; Hickam, Bryce P. ; He, Manni ; Cushing, Scott K.</creator><creatorcontrib>Harper, Nathan ; Hickam, Bryce P. ; He, Manni ; Cushing, Scott K. ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>Fluorescence lifetime experiments are a standard approach for measuring excited-state dynamics and local environmental effects. Here, we show that entangled photon pairs produced from a continuous-wave (CW) laser diode can replicate pulsed laser experiments without phase modulation. As a proof of principle, picosecond fluorescence lifetimes of indocyanine green are measured in multiple environments. The use of entangled photons has three unique advantages. First, low-power CW laser diodes and entangled photon source design lead to straightforward on-chip integration for a direct path to distributable fluorescence lifetime measurements. Second, the entangled pair’s wavelength is easily tuned by adjusting the temperature or electric field, allowing a single source to cover octave bandwidths. Third, femtosecond temporal resolutions can be reached without requiring major advances in source technology or external phase modulation. Entangled photons could therefore provide increased accessibility to time-resolved fluorescence while also opening new scientific avenues in photosensitive and inherently quantum systems.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c01266</identifier><identifier>PMID: 37338128</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science ; Physical Insights into Light Interacting with Matter ; Physics ; Science &amp; Technology - Other Topics</subject><ispartof>The journal of physical chemistry letters, 2023-06, Vol.14 (25), p.5805-5811</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-aacb241395a1838566c5e3fe2938bcc72be5499f687ea89dce11a401cdfdcdc43</citedby><cites>FETCH-LOGICAL-a372t-aacb241395a1838566c5e3fe2938bcc72be5499f687ea89dce11a401cdfdcdc43</cites><orcidid>0000-0003-2120-4769 ; 0000-0003-3538-2259 ; 0000-0001-8727-0932 ; 0000000335382259 ; 0000000321204769 ; 0000000187270932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c01266$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c01266$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37338128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2421452$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Harper, Nathan</creatorcontrib><creatorcontrib>Hickam, Bryce P.</creatorcontrib><creatorcontrib>He, Manni</creatorcontrib><creatorcontrib>Cushing, Scott K.</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Entangled Photon Correlations Allow a Continuous-Wave Laser Diode to Measure Single-Photon, Time-Resolved Fluorescence</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Fluorescence lifetime experiments are a standard approach for measuring excited-state dynamics and local environmental effects. Here, we show that entangled photon pairs produced from a continuous-wave (CW) laser diode can replicate pulsed laser experiments without phase modulation. As a proof of principle, picosecond fluorescence lifetimes of indocyanine green are measured in multiple environments. The use of entangled photons has three unique advantages. First, low-power CW laser diodes and entangled photon source design lead to straightforward on-chip integration for a direct path to distributable fluorescence lifetime measurements. Second, the entangled pair’s wavelength is easily tuned by adjusting the temperature or electric field, allowing a single source to cover octave bandwidths. Third, femtosecond temporal resolutions can be reached without requiring major advances in source technology or external phase modulation. Entangled photons could therefore provide increased accessibility to time-resolved fluorescence while also opening new scientific avenues in photosensitive and inherently quantum systems.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Physical Insights into Light Interacting with Matter</subject><subject>Physics</subject><subject>Science &amp; Technology - Other Topics</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUtvEzEURi1ERR_wC5CQxYoFk_oxD8-yCm1BCgJBEUvLuXOHunLs1PYE8e_rMGnFipUt6_uOr30Iec3ZgjPBzw2kxd0WHOa8kMC4aNtn5IT3tao6rprn_-yPyWlKd4y1PVPdC3IsOykVF-qE7C59Nv6Xw4F-vQ05eLoMMaIz2Qaf6IVz4Tc15dBn66cwpeqn2SFdmYSRfrBhQJoD_YwmTRHpd7tHVTPpPb2xG6y-YQpuV_hXbgoRE6AHfEmORuMSvjqsZ-TH1eXN8mO1-nL9aXmxqozsRK6MgbWouewbw5VUTdtCg3JE0Uu1BujEGpu678dWdWhUPwBybmrGYRgHGKCWZ-TtzA0pW53AZoRbCN4jZC1qwetGlNC7ObSN4X7ClPXGljGdMx7Li7VQouuFbNieJ-coxJBSxFFvo92Y-EdzpvdWdLGiD1b0wUppvTlcMK03ODx1HjWUwPkc-NsOU_TlU_6LfADD3Z0I</recordid><startdate>20230629</startdate><enddate>20230629</enddate><creator>Harper, Nathan</creator><creator>Hickam, Bryce P.</creator><creator>He, Manni</creator><creator>Cushing, Scott K.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2120-4769</orcidid><orcidid>https://orcid.org/0000-0003-3538-2259</orcidid><orcidid>https://orcid.org/0000-0001-8727-0932</orcidid><orcidid>https://orcid.org/0000000335382259</orcidid><orcidid>https://orcid.org/0000000321204769</orcidid><orcidid>https://orcid.org/0000000187270932</orcidid></search><sort><creationdate>20230629</creationdate><title>Entangled Photon Correlations Allow a Continuous-Wave Laser Diode to Measure Single-Photon, Time-Resolved Fluorescence</title><author>Harper, Nathan ; Hickam, Bryce P. ; He, Manni ; Cushing, Scott K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-aacb241395a1838566c5e3fe2938bcc72be5499f687ea89dce11a401cdfdcdc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Physical Insights into Light Interacting with Matter</topic><topic>Physics</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harper, Nathan</creatorcontrib><creatorcontrib>Hickam, Bryce P.</creatorcontrib><creatorcontrib>He, Manni</creatorcontrib><creatorcontrib>Cushing, Scott K.</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harper, Nathan</au><au>Hickam, Bryce P.</au><au>He, Manni</au><au>Cushing, Scott K.</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entangled Photon Correlations Allow a Continuous-Wave Laser Diode to Measure Single-Photon, Time-Resolved Fluorescence</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-06-29</date><risdate>2023</risdate><volume>14</volume><issue>25</issue><spage>5805</spage><epage>5811</epage><pages>5805-5811</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Fluorescence lifetime experiments are a standard approach for measuring excited-state dynamics and local environmental effects. Here, we show that entangled photon pairs produced from a continuous-wave (CW) laser diode can replicate pulsed laser experiments without phase modulation. As a proof of principle, picosecond fluorescence lifetimes of indocyanine green are measured in multiple environments. The use of entangled photons has three unique advantages. First, low-power CW laser diodes and entangled photon source design lead to straightforward on-chip integration for a direct path to distributable fluorescence lifetime measurements. Second, the entangled pair’s wavelength is easily tuned by adjusting the temperature or electric field, allowing a single source to cover octave bandwidths. Third, femtosecond temporal resolutions can be reached without requiring major advances in source technology or external phase modulation. Entangled photons could therefore provide increased accessibility to time-resolved fluorescence while also opening new scientific avenues in photosensitive and inherently quantum systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37338128</pmid><doi>10.1021/acs.jpclett.3c01266</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2120-4769</orcidid><orcidid>https://orcid.org/0000-0003-3538-2259</orcidid><orcidid>https://orcid.org/0000-0001-8727-0932</orcidid><orcidid>https://orcid.org/0000000335382259</orcidid><orcidid>https://orcid.org/0000000321204769</orcidid><orcidid>https://orcid.org/0000000187270932</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2023-06, Vol.14 (25), p.5805-5811
issn 1948-7185
1948-7185
language eng
recordid cdi_osti_scitechconnect_2421452
source American Chemical Society Journals
subjects Chemistry
Materials Science
Physical Insights into Light Interacting with Matter
Physics
Science & Technology - Other Topics
title Entangled Photon Correlations Allow a Continuous-Wave Laser Diode to Measure Single-Photon, Time-Resolved Fluorescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entangled%20Photon%20Correlations%20Allow%20a%20Continuous-Wave%20Laser%20Diode%20to%20Measure%20Single-Photon,%20Time-Resolved%20Fluorescence&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Harper,%20Nathan&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2023-06-29&rft.volume=14&rft.issue=25&rft.spage=5805&rft.epage=5811&rft.pages=5805-5811&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c01266&rft_dat=%3Cproquest_osti_%3E2827923504%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827923504&rft_id=info:pmid/37338128&rfr_iscdi=true