Evidence of frustrated magnetic interactions in a Wigner–Mott insulator
Electrons in two-dimensional semiconductor moiré materials are more delocalized around the lattice sites than those in conventional solids 1 , 2 . The non-local contributions to the magnetic interactions can therefore be as important as the Anderson superexchange 3 , which makes the materials a uniq...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2023-03, Vol.18 (3), p.233-237 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 3 |
container_start_page | 233 |
container_title | Nature nanotechnology |
container_volume | 18 |
creator | Tang, Yanhao Su, Kaixiang Li, Lizhong Xu, Yang Liu, Song Watanabe, Kenji Taniguchi, Takashi Hone, James Jian, Chao-Ming Xu, Cenke Mak, Kin Fai Shan, Jie |
description | Electrons in two-dimensional semiconductor moiré materials are more delocalized around the lattice sites than those in conventional solids
1
,
2
. The non-local contributions to the magnetic interactions can therefore be as important as the Anderson superexchange
3
, which makes the materials a unique platform to study the effects of competing magnetic interactions
3
,
4
. Here we report evidence of strongly frustrated magnetic interactions in a Wigner–Mott insulator at a two-thirds (2/3) filling of the moiré lattice in angle-aligned WSe
2
/WS
2
bilayers. Magneto-optical measurements show that the net exchange interaction is antiferromagnetic for filling factors below 1 with a strong suppression at a 2/3 filling. The suppression is lifted on screening of the long-range Coulomb interactions and melting of the Wigner–Mott insulators by a nearby metallic gate. The results can be qualitatively captured by a honeycomb-lattice spin model with an antiferromagnetic nearest-neighbour coupling and a ferromagnetic second-neighbour coupling. Our study establishes semiconductor moiré materials as a model system for lattice-spin physics and frustrated magnetism
5
.
Electrons in two-dimensional semiconductor moiré materials experience competing magnetic interactions. Magneto-optical measurements of moiré devices with controlled screening of the Coulomb interactions now evidence a Wigner–Mott insulating state with frustrated magnetic interactions. |
doi_str_mv | 10.1038/s41565-022-01309-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2421342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787390947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-723bc75817c47e74bac8ea37c7f7aa2092b0ea5d5de8eb4d86a7ac26508500203</originalsourceid><addsrcrecordid>eNp9kctO3TAQhi1UxP0FWKCobNikTHyJnWV1RAsSFRsQS8txJmB0jg22g8SOd-gb9klqCBepi65sz3zzj_z_hOw38K0Bpo4Tb0QraqC0hoZBV6s1stVIrmrGOvHl467kJtlO6Q5A0I7yDbLJ2pa3isotcnby6Ab0FqswVmOcUo4m41CtzI3H7GzlfMZobHbBp_KoTHXtSiv-ef79K-RcSmlamhziLlkfzTLh3tu5Q65-nFwuTuvzi59ni-_nteVAcy0p660UqpGWS5S8N1ahYdLKURpDoaM9oBGDGFBhzwfVGmksbQUoAUCB7ZCvs25I2elkXUZ7a4P3aLOmnDaM0wIdzdB9DA8TpqxXLllcLo3HMCVNZXGAgex4QQ__Qe_CFH35QqGUZB10XBaKzpSNIaWIo76PbmXik25Av6Sh5zR0SUO_pqFVGTp4k576FQ4fI-_2F4DNQCotf4Pxc_d_ZP8C0PaU6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787390947</pqid></control><display><type>article</type><title>Evidence of frustrated magnetic interactions in a Wigner–Mott insulator</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tang, Yanhao ; Su, Kaixiang ; Li, Lizhong ; Xu, Yang ; Liu, Song ; Watanabe, Kenji ; Taniguchi, Takashi ; Hone, James ; Jian, Chao-Ming ; Xu, Cenke ; Mak, Kin Fai ; Shan, Jie</creator><creatorcontrib>Tang, Yanhao ; Su, Kaixiang ; Li, Lizhong ; Xu, Yang ; Liu, Song ; Watanabe, Kenji ; Taniguchi, Takashi ; Hone, James ; Jian, Chao-Ming ; Xu, Cenke ; Mak, Kin Fai ; Shan, Jie ; Cornell Univ., Ithaca, NY (United States)</creatorcontrib><description>Electrons in two-dimensional semiconductor moiré materials are more delocalized around the lattice sites than those in conventional solids
1
,
2
. The non-local contributions to the magnetic interactions can therefore be as important as the Anderson superexchange
3
, which makes the materials a unique platform to study the effects of competing magnetic interactions
3
,
4
. Here we report evidence of strongly frustrated magnetic interactions in a Wigner–Mott insulator at a two-thirds (2/3) filling of the moiré lattice in angle-aligned WSe
2
/WS
2
bilayers. Magneto-optical measurements show that the net exchange interaction is antiferromagnetic for filling factors below 1 with a strong suppression at a 2/3 filling. The suppression is lifted on screening of the long-range Coulomb interactions and melting of the Wigner–Mott insulators by a nearby metallic gate. The results can be qualitatively captured by a honeycomb-lattice spin model with an antiferromagnetic nearest-neighbour coupling and a ferromagnetic second-neighbour coupling. Our study establishes semiconductor moiré materials as a model system for lattice-spin physics and frustrated magnetism
5
.
Electrons in two-dimensional semiconductor moiré materials experience competing magnetic interactions. Magneto-optical measurements of moiré devices with controlled screening of the Coulomb interactions now evidence a Wigner–Mott insulating state with frustrated magnetic interactions.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-022-01309-8</identifier><identifier>PMID: 36646827</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1000/1018 ; 639/766/119/997 ; 639/766/483/3926 ; Antiferromagnetism ; Bilayers ; Chemistry and Materials Science ; Coupling ; Electron spin ; Electrons ; Ferromagnetic materials ; Insulators ; Lattice sites ; Letter ; Low dimensional semiconductors ; Magnetic fields ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Onsite ; Optical measurement ; Physics ; Science & Technology - Other Topics ; Screening ; Temperature</subject><ispartof>Nature nanotechnology, 2023-03, Vol.18 (3), p.233-237</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-723bc75817c47e74bac8ea37c7f7aa2092b0ea5d5de8eb4d86a7ac26508500203</citedby><cites>FETCH-LOGICAL-c402t-723bc75817c47e74bac8ea37c7f7aa2092b0ea5d5de8eb4d86a7ac26508500203</cites><orcidid>0000-0003-3701-8119 ; 0000-0003-4223-8677 ; 0000-0002-5768-199X ; 0000-0003-1270-9386 ; 0000-0002-1467-3105 ; 0000-0002-8084-3301 ; 000000025768199X ; 0000000280843301 ; 0000000312709386 ; 0000000342238677 ; 0000000337018119 ; 0000000214673105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-022-01309-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-022-01309-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36646827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2421342$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Yanhao</creatorcontrib><creatorcontrib>Su, Kaixiang</creatorcontrib><creatorcontrib>Li, Lizhong</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Liu, Song</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Jian, Chao-Ming</creatorcontrib><creatorcontrib>Xu, Cenke</creatorcontrib><creatorcontrib>Mak, Kin Fai</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Cornell Univ., Ithaca, NY (United States)</creatorcontrib><title>Evidence of frustrated magnetic interactions in a Wigner–Mott insulator</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Electrons in two-dimensional semiconductor moiré materials are more delocalized around the lattice sites than those in conventional solids
1
,
2
. The non-local contributions to the magnetic interactions can therefore be as important as the Anderson superexchange
3
, which makes the materials a unique platform to study the effects of competing magnetic interactions
3
,
4
. Here we report evidence of strongly frustrated magnetic interactions in a Wigner–Mott insulator at a two-thirds (2/3) filling of the moiré lattice in angle-aligned WSe
2
/WS
2
bilayers. Magneto-optical measurements show that the net exchange interaction is antiferromagnetic for filling factors below 1 with a strong suppression at a 2/3 filling. The suppression is lifted on screening of the long-range Coulomb interactions and melting of the Wigner–Mott insulators by a nearby metallic gate. The results can be qualitatively captured by a honeycomb-lattice spin model with an antiferromagnetic nearest-neighbour coupling and a ferromagnetic second-neighbour coupling. Our study establishes semiconductor moiré materials as a model system for lattice-spin physics and frustrated magnetism
5
.
Electrons in two-dimensional semiconductor moiré materials experience competing magnetic interactions. Magneto-optical measurements of moiré devices with controlled screening of the Coulomb interactions now evidence a Wigner–Mott insulating state with frustrated magnetic interactions.</description><subject>639/766/119/1000/1018</subject><subject>639/766/119/997</subject><subject>639/766/483/3926</subject><subject>Antiferromagnetism</subject><subject>Bilayers</subject><subject>Chemistry and Materials Science</subject><subject>Coupling</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Ferromagnetic materials</subject><subject>Insulators</subject><subject>Lattice sites</subject><subject>Letter</subject><subject>Low dimensional semiconductors</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Onsite</subject><subject>Optical measurement</subject><subject>Physics</subject><subject>Science & Technology - Other Topics</subject><subject>Screening</subject><subject>Temperature</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctO3TAQhi1UxP0FWKCobNikTHyJnWV1RAsSFRsQS8txJmB0jg22g8SOd-gb9klqCBepi65sz3zzj_z_hOw38K0Bpo4Tb0QraqC0hoZBV6s1stVIrmrGOvHl467kJtlO6Q5A0I7yDbLJ2pa3isotcnby6Ab0FqswVmOcUo4m41CtzI3H7GzlfMZobHbBp_KoTHXtSiv-ef79K-RcSmlamhziLlkfzTLh3tu5Q65-nFwuTuvzi59ni-_nteVAcy0p660UqpGWS5S8N1ahYdLKURpDoaM9oBGDGFBhzwfVGmksbQUoAUCB7ZCvs25I2elkXUZ7a4P3aLOmnDaM0wIdzdB9DA8TpqxXLllcLo3HMCVNZXGAgex4QQ__Qe_CFH35QqGUZB10XBaKzpSNIaWIo76PbmXik25Av6Sh5zR0SUO_pqFVGTp4k576FQ4fI-_2F4DNQCotf4Pxc_d_ZP8C0PaU6A</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Tang, Yanhao</creator><creator>Su, Kaixiang</creator><creator>Li, Lizhong</creator><creator>Xu, Yang</creator><creator>Liu, Song</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Hone, James</creator><creator>Jian, Chao-Ming</creator><creator>Xu, Cenke</creator><creator>Mak, Kin Fai</creator><creator>Shan, Jie</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-4223-8677</orcidid><orcidid>https://orcid.org/0000-0002-5768-199X</orcidid><orcidid>https://orcid.org/0000-0003-1270-9386</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-8084-3301</orcidid><orcidid>https://orcid.org/000000025768199X</orcidid><orcidid>https://orcid.org/0000000280843301</orcidid><orcidid>https://orcid.org/0000000312709386</orcidid><orcidid>https://orcid.org/0000000342238677</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid></search><sort><creationdate>20230301</creationdate><title>Evidence of frustrated magnetic interactions in a Wigner–Mott insulator</title><author>Tang, Yanhao ; Su, Kaixiang ; Li, Lizhong ; Xu, Yang ; Liu, Song ; Watanabe, Kenji ; Taniguchi, Takashi ; Hone, James ; Jian, Chao-Ming ; Xu, Cenke ; Mak, Kin Fai ; Shan, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-723bc75817c47e74bac8ea37c7f7aa2092b0ea5d5de8eb4d86a7ac26508500203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/119/1000/1018</topic><topic>639/766/119/997</topic><topic>639/766/483/3926</topic><topic>Antiferromagnetism</topic><topic>Bilayers</topic><topic>Chemistry and Materials Science</topic><topic>Coupling</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Ferromagnetic materials</topic><topic>Insulators</topic><topic>Lattice sites</topic><topic>Letter</topic><topic>Low dimensional semiconductors</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Onsite</topic><topic>Optical measurement</topic><topic>Physics</topic><topic>Science & Technology - Other Topics</topic><topic>Screening</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yanhao</creatorcontrib><creatorcontrib>Su, Kaixiang</creatorcontrib><creatorcontrib>Li, Lizhong</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Liu, Song</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Jian, Chao-Ming</creatorcontrib><creatorcontrib>Xu, Cenke</creatorcontrib><creatorcontrib>Mak, Kin Fai</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Cornell Univ., Ithaca, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yanhao</au><au>Su, Kaixiang</au><au>Li, Lizhong</au><au>Xu, Yang</au><au>Liu, Song</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Hone, James</au><au>Jian, Chao-Ming</au><au>Xu, Cenke</au><au>Mak, Kin Fai</au><au>Shan, Jie</au><aucorp>Cornell Univ., Ithaca, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of frustrated magnetic interactions in a Wigner–Mott insulator</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>18</volume><issue>3</issue><spage>233</spage><epage>237</epage><pages>233-237</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Electrons in two-dimensional semiconductor moiré materials are more delocalized around the lattice sites than those in conventional solids
1
,
2
. The non-local contributions to the magnetic interactions can therefore be as important as the Anderson superexchange
3
, which makes the materials a unique platform to study the effects of competing magnetic interactions
3
,
4
. Here we report evidence of strongly frustrated magnetic interactions in a Wigner–Mott insulator at a two-thirds (2/3) filling of the moiré lattice in angle-aligned WSe
2
/WS
2
bilayers. Magneto-optical measurements show that the net exchange interaction is antiferromagnetic for filling factors below 1 with a strong suppression at a 2/3 filling. The suppression is lifted on screening of the long-range Coulomb interactions and melting of the Wigner–Mott insulators by a nearby metallic gate. The results can be qualitatively captured by a honeycomb-lattice spin model with an antiferromagnetic nearest-neighbour coupling and a ferromagnetic second-neighbour coupling. Our study establishes semiconductor moiré materials as a model system for lattice-spin physics and frustrated magnetism
5
.
Electrons in two-dimensional semiconductor moiré materials experience competing magnetic interactions. Magneto-optical measurements of moiré devices with controlled screening of the Coulomb interactions now evidence a Wigner–Mott insulating state with frustrated magnetic interactions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36646827</pmid><doi>10.1038/s41565-022-01309-8</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-4223-8677</orcidid><orcidid>https://orcid.org/0000-0002-5768-199X</orcidid><orcidid>https://orcid.org/0000-0003-1270-9386</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-8084-3301</orcidid><orcidid>https://orcid.org/000000025768199X</orcidid><orcidid>https://orcid.org/0000000280843301</orcidid><orcidid>https://orcid.org/0000000312709386</orcidid><orcidid>https://orcid.org/0000000342238677</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2023-03, Vol.18 (3), p.233-237 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_osti_scitechconnect_2421342 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/766/119/1000/1018 639/766/119/997 639/766/483/3926 Antiferromagnetism Bilayers Chemistry and Materials Science Coupling Electron spin Electrons Ferromagnetic materials Insulators Lattice sites Letter Low dimensional semiconductors Magnetic fields Materials Science Nanotechnology Nanotechnology and Microengineering Onsite Optical measurement Physics Science & Technology - Other Topics Screening Temperature |
title | Evidence of frustrated magnetic interactions in a Wigner–Mott insulator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20frustrated%20magnetic%20interactions%20in%20a%20Wigner%E2%80%93Mott%20insulator&rft.jtitle=Nature%20nanotechnology&rft.au=Tang,%20Yanhao&rft.aucorp=Cornell%20Univ.,%20Ithaca,%20NY%20(United%20States)&rft.date=2023-03-01&rft.volume=18&rft.issue=3&rft.spage=233&rft.epage=237&rft.pages=233-237&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-022-01309-8&rft_dat=%3Cproquest_osti_%3E2787390947%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787390947&rft_id=info:pmid/36646827&rfr_iscdi=true |