Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries

How surface chemistry influences reactions occurring thereupon has been a long-standing question of broad scientific and technological interest. Here, we consider the relation between the surface chemistry at interfaces and the reversibility of electrochemical transformations at rechargeable battery...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-11, Vol.8 (44), p.eabq6321-eabq6321
Hauptverfasser: Zheng, Jingxu, Deng, Yue, Li, Wenzao, Yin, Jiefu, West, Patrick J., Tang, Tian, Tong, Xiao, Bock, David C., Jin, Shuo, Zhao, Qing, Garcia-Mendez, Regina, Takeuchi, Kenneth J., Takeuchi, Esther S., Marschilok, Amy C., Archer, Lynden A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eabq6321
container_issue 44
container_start_page eabq6321
container_title Science advances
container_volume 8
creator Zheng, Jingxu
Deng, Yue
Li, Wenzao
Yin, Jiefu
West, Patrick J.
Tang, Tian
Tong, Xiao
Bock, David C.
Jin, Shuo
Zhao, Qing
Garcia-Mendez, Regina
Takeuchi, Kenneth J.
Takeuchi, Esther S.
Marschilok, Amy C.
Archer, Lynden A.
description How surface chemistry influences reactions occurring thereupon has been a long-standing question of broad scientific and technological interest. Here, we consider the relation between the surface chemistry at interfaces and the reversibility of electrochemical transformations at rechargeable battery electrodes. Using Zn as a model system, we report that a moderate strength of chemical interaction between the deposit and the substrate—neither too weak nor too strong—enables highest reversibility and stability of the plating/stripping redox processes. Focused ion beam and electron microscopy were used to directly probe the morphology, chemistry, and crystallography of heterointerfaces of distinct natures. Analogous to the empirical Sabatier principle for chemical heterogeneous catalysis, our findings arise from competing interfacial processes. Using full batteries with stringent negative electrode–to–positive electrode capacity (N:P) ratios, we show that such knowledge provides a powerful tool for designing key materials in highly reversible battery systems based on Earth-abundant, low-cost metals such as Zn and Na. Principles of interfacial chemical kinetics provide powerful guidelines for designing battery anodes.
doi_str_mv 10.1126/sciadv.abq6321
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2420258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732541159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-6411b4b6809e02dfae3da12c38722b7c0d7bd5294f65fa177b476ff865a91be03</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGqvnoMnL1vzsZvdPUr9hIIXPYckO2mj26QmqdB_b2R78DIzDM-8DA9C15QsKWXiLhmnhp-l0t-CM3qGZoy3TcWaujv_N1-iRUqfhBBaC9HQfobsAyS38XgfnTduP0LCNkS8hQwxOF-qVSV6xGocw9H5Df5yHrIzCauMd5DL3hmsfBjKqfM4gtmquAGlR8Ba5ZLgIF2hC6vGBItTn6OPp8f31Uu1fnt-Xd2vK8N5nytRU6prLTrSA2GDVcAHRZnhXcuYbg0ZWj00rK-taKyibavrVljbiUb1VAPhc3Qz5YaUnSxScnnHBO_BZMlqRljTFeh2gvYxfB8gZblzycA4Kg_hkCRreZFFadMXdDmhJoaUIlhZRO1UPEpK5J94OYmXJ_H8F1Azedk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732541159</pqid></control><display><type>article</type><title>Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Zheng, Jingxu ; Deng, Yue ; Li, Wenzao ; Yin, Jiefu ; West, Patrick J. ; Tang, Tian ; Tong, Xiao ; Bock, David C. ; Jin, Shuo ; Zhao, Qing ; Garcia-Mendez, Regina ; Takeuchi, Kenneth J. ; Takeuchi, Esther S. ; Marschilok, Amy C. ; Archer, Lynden A.</creator><creatorcontrib>Zheng, Jingxu ; Deng, Yue ; Li, Wenzao ; Yin, Jiefu ; West, Patrick J. ; Tang, Tian ; Tong, Xiao ; Bock, David C. ; Jin, Shuo ; Zhao, Qing ; Garcia-Mendez, Regina ; Takeuchi, Kenneth J. ; Takeuchi, Esther S. ; Marschilok, Amy C. ; Archer, Lynden A. ; State Univ. of New York (SUNY), Albany, NY (United States)</creatorcontrib><description>How surface chemistry influences reactions occurring thereupon has been a long-standing question of broad scientific and technological interest. Here, we consider the relation between the surface chemistry at interfaces and the reversibility of electrochemical transformations at rechargeable battery electrodes. Using Zn as a model system, we report that a moderate strength of chemical interaction between the deposit and the substrate—neither too weak nor too strong—enables highest reversibility and stability of the plating/stripping redox processes. Focused ion beam and electron microscopy were used to directly probe the morphology, chemistry, and crystallography of heterointerfaces of distinct natures. Analogous to the empirical Sabatier principle for chemical heterogeneous catalysis, our findings arise from competing interfacial processes. Using full batteries with stringent negative electrode–to–positive electrode capacity (N:P) ratios, we show that such knowledge provides a powerful tool for designing key materials in highly reversible battery systems based on Earth-abundant, low-cost metals such as Zn and Na. Principles of interfacial chemical kinetics provide powerful guidelines for designing battery anodes.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abq6321</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>ENERGY STORAGE ; Science &amp; Technology - Other Topics</subject><ispartof>Science advances, 2022-11, Vol.8 (44), p.eabq6321-eabq6321</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-6411b4b6809e02dfae3da12c38722b7c0d7bd5294f65fa177b476ff865a91be03</citedby><cites>FETCH-LOGICAL-c339t-6411b4b6809e02dfae3da12c38722b7c0d7bd5294f65fa177b476ff865a91be03</cites><orcidid>0000-0001-9174-0474 ; 0000-0002-2387-7791 ; 0000-0001-8129-444X ; 0000-0001-9032-2772 ; 0000-0003-3098-6870 ; 0000-0002-2233-4912 ; 0000-0002-0980-3673 ; 0000-0003-0425-9143 ; 0000-0003-0625-9892 ; 0000-0002-1683-5884 ; 0000-0002-5567-9677 ; 0000-0002-0673-0560 ; 0000-0001-8518-1047 ; 0000-0002-8717-9538 ; 0000000330986870 ; 0000000190322772 ; 0000000216835884 ; 0000000209803673 ; 0000000222334912 ; 0000000255679677 ; 0000000287179538 ; 0000000304259143 ; 0000000223877791 ; 000000018129444X ; 0000000185181047 ; 0000000206730560 ; 0000000306259892 ; 0000000191740474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2420258$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Jingxu</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Li, Wenzao</creatorcontrib><creatorcontrib>Yin, Jiefu</creatorcontrib><creatorcontrib>West, Patrick J.</creatorcontrib><creatorcontrib>Tang, Tian</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Bock, David C.</creatorcontrib><creatorcontrib>Jin, Shuo</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Garcia-Mendez, Regina</creatorcontrib><creatorcontrib>Takeuchi, Kenneth J.</creatorcontrib><creatorcontrib>Takeuchi, Esther S.</creatorcontrib><creatorcontrib>Marschilok, Amy C.</creatorcontrib><creatorcontrib>Archer, Lynden A.</creatorcontrib><creatorcontrib>State Univ. of New York (SUNY), Albany, NY (United States)</creatorcontrib><title>Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries</title><title>Science advances</title><description>How surface chemistry influences reactions occurring thereupon has been a long-standing question of broad scientific and technological interest. Here, we consider the relation between the surface chemistry at interfaces and the reversibility of electrochemical transformations at rechargeable battery electrodes. Using Zn as a model system, we report that a moderate strength of chemical interaction between the deposit and the substrate—neither too weak nor too strong—enables highest reversibility and stability of the plating/stripping redox processes. Focused ion beam and electron microscopy were used to directly probe the morphology, chemistry, and crystallography of heterointerfaces of distinct natures. Analogous to the empirical Sabatier principle for chemical heterogeneous catalysis, our findings arise from competing interfacial processes. Using full batteries with stringent negative electrode–to–positive electrode capacity (N:P) ratios, we show that such knowledge provides a powerful tool for designing key materials in highly reversible battery systems based on Earth-abundant, low-cost metals such as Zn and Na. Principles of interfacial chemical kinetics provide powerful guidelines for designing battery anodes.</description><subject>ENERGY STORAGE</subject><subject>Science &amp; Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWGqvnoMnL1vzsZvdPUr9hIIXPYckO2mj26QmqdB_b2R78DIzDM-8DA9C15QsKWXiLhmnhp-l0t-CM3qGZoy3TcWaujv_N1-iRUqfhBBaC9HQfobsAyS38XgfnTduP0LCNkS8hQwxOF-qVSV6xGocw9H5Df5yHrIzCauMd5DL3hmsfBjKqfM4gtmquAGlR8Ba5ZLgIF2hC6vGBItTn6OPp8f31Uu1fnt-Xd2vK8N5nytRU6prLTrSA2GDVcAHRZnhXcuYbg0ZWj00rK-taKyibavrVljbiUb1VAPhc3Qz5YaUnSxScnnHBO_BZMlqRljTFeh2gvYxfB8gZblzycA4Kg_hkCRreZFFadMXdDmhJoaUIlhZRO1UPEpK5J94OYmXJ_H8F1Azedk</recordid><startdate>20221104</startdate><enddate>20221104</enddate><creator>Zheng, Jingxu</creator><creator>Deng, Yue</creator><creator>Li, Wenzao</creator><creator>Yin, Jiefu</creator><creator>West, Patrick J.</creator><creator>Tang, Tian</creator><creator>Tong, Xiao</creator><creator>Bock, David C.</creator><creator>Jin, Shuo</creator><creator>Zhao, Qing</creator><creator>Garcia-Mendez, Regina</creator><creator>Takeuchi, Kenneth J.</creator><creator>Takeuchi, Esther S.</creator><creator>Marschilok, Amy C.</creator><creator>Archer, Lynden A.</creator><general>AAAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9174-0474</orcidid><orcidid>https://orcid.org/0000-0002-2387-7791</orcidid><orcidid>https://orcid.org/0000-0001-8129-444X</orcidid><orcidid>https://orcid.org/0000-0001-9032-2772</orcidid><orcidid>https://orcid.org/0000-0003-3098-6870</orcidid><orcidid>https://orcid.org/0000-0002-2233-4912</orcidid><orcidid>https://orcid.org/0000-0002-0980-3673</orcidid><orcidid>https://orcid.org/0000-0003-0425-9143</orcidid><orcidid>https://orcid.org/0000-0003-0625-9892</orcidid><orcidid>https://orcid.org/0000-0002-1683-5884</orcidid><orcidid>https://orcid.org/0000-0002-5567-9677</orcidid><orcidid>https://orcid.org/0000-0002-0673-0560</orcidid><orcidid>https://orcid.org/0000-0001-8518-1047</orcidid><orcidid>https://orcid.org/0000-0002-8717-9538</orcidid><orcidid>https://orcid.org/0000000330986870</orcidid><orcidid>https://orcid.org/0000000190322772</orcidid><orcidid>https://orcid.org/0000000216835884</orcidid><orcidid>https://orcid.org/0000000209803673</orcidid><orcidid>https://orcid.org/0000000222334912</orcidid><orcidid>https://orcid.org/0000000255679677</orcidid><orcidid>https://orcid.org/0000000287179538</orcidid><orcidid>https://orcid.org/0000000304259143</orcidid><orcidid>https://orcid.org/0000000223877791</orcidid><orcidid>https://orcid.org/000000018129444X</orcidid><orcidid>https://orcid.org/0000000185181047</orcidid><orcidid>https://orcid.org/0000000206730560</orcidid><orcidid>https://orcid.org/0000000306259892</orcidid><orcidid>https://orcid.org/0000000191740474</orcidid></search><sort><creationdate>20221104</creationdate><title>Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries</title><author>Zheng, Jingxu ; Deng, Yue ; Li, Wenzao ; Yin, Jiefu ; West, Patrick J. ; Tang, Tian ; Tong, Xiao ; Bock, David C. ; Jin, Shuo ; Zhao, Qing ; Garcia-Mendez, Regina ; Takeuchi, Kenneth J. ; Takeuchi, Esther S. ; Marschilok, Amy C. ; Archer, Lynden A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-6411b4b6809e02dfae3da12c38722b7c0d7bd5294f65fa177b476ff865a91be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ENERGY STORAGE</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jingxu</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Li, Wenzao</creatorcontrib><creatorcontrib>Yin, Jiefu</creatorcontrib><creatorcontrib>West, Patrick J.</creatorcontrib><creatorcontrib>Tang, Tian</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Bock, David C.</creatorcontrib><creatorcontrib>Jin, Shuo</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Garcia-Mendez, Regina</creatorcontrib><creatorcontrib>Takeuchi, Kenneth J.</creatorcontrib><creatorcontrib>Takeuchi, Esther S.</creatorcontrib><creatorcontrib>Marschilok, Amy C.</creatorcontrib><creatorcontrib>Archer, Lynden A.</creatorcontrib><creatorcontrib>State Univ. of New York (SUNY), Albany, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Jingxu</au><au>Deng, Yue</au><au>Li, Wenzao</au><au>Yin, Jiefu</au><au>West, Patrick J.</au><au>Tang, Tian</au><au>Tong, Xiao</au><au>Bock, David C.</au><au>Jin, Shuo</au><au>Zhao, Qing</au><au>Garcia-Mendez, Regina</au><au>Takeuchi, Kenneth J.</au><au>Takeuchi, Esther S.</au><au>Marschilok, Amy C.</au><au>Archer, Lynden A.</au><aucorp>State Univ. of New York (SUNY), Albany, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries</atitle><jtitle>Science advances</jtitle><date>2022-11-04</date><risdate>2022</risdate><volume>8</volume><issue>44</issue><spage>eabq6321</spage><epage>eabq6321</epage><pages>eabq6321-eabq6321</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>How surface chemistry influences reactions occurring thereupon has been a long-standing question of broad scientific and technological interest. Here, we consider the relation between the surface chemistry at interfaces and the reversibility of electrochemical transformations at rechargeable battery electrodes. Using Zn as a model system, we report that a moderate strength of chemical interaction between the deposit and the substrate—neither too weak nor too strong—enables highest reversibility and stability of the plating/stripping redox processes. Focused ion beam and electron microscopy were used to directly probe the morphology, chemistry, and crystallography of heterointerfaces of distinct natures. Analogous to the empirical Sabatier principle for chemical heterogeneous catalysis, our findings arise from competing interfacial processes. Using full batteries with stringent negative electrode–to–positive electrode capacity (N:P) ratios, we show that such knowledge provides a powerful tool for designing key materials in highly reversible battery systems based on Earth-abundant, low-cost metals such as Zn and Na. Principles of interfacial chemical kinetics provide powerful guidelines for designing battery anodes.</abstract><cop>United States</cop><pub>AAAS</pub><doi>10.1126/sciadv.abq6321</doi><orcidid>https://orcid.org/0000-0001-9174-0474</orcidid><orcidid>https://orcid.org/0000-0002-2387-7791</orcidid><orcidid>https://orcid.org/0000-0001-8129-444X</orcidid><orcidid>https://orcid.org/0000-0001-9032-2772</orcidid><orcidid>https://orcid.org/0000-0003-3098-6870</orcidid><orcidid>https://orcid.org/0000-0002-2233-4912</orcidid><orcidid>https://orcid.org/0000-0002-0980-3673</orcidid><orcidid>https://orcid.org/0000-0003-0425-9143</orcidid><orcidid>https://orcid.org/0000-0003-0625-9892</orcidid><orcidid>https://orcid.org/0000-0002-1683-5884</orcidid><orcidid>https://orcid.org/0000-0002-5567-9677</orcidid><orcidid>https://orcid.org/0000-0002-0673-0560</orcidid><orcidid>https://orcid.org/0000-0001-8518-1047</orcidid><orcidid>https://orcid.org/0000-0002-8717-9538</orcidid><orcidid>https://orcid.org/0000000330986870</orcidid><orcidid>https://orcid.org/0000000190322772</orcidid><orcidid>https://orcid.org/0000000216835884</orcidid><orcidid>https://orcid.org/0000000209803673</orcidid><orcidid>https://orcid.org/0000000222334912</orcidid><orcidid>https://orcid.org/0000000255679677</orcidid><orcidid>https://orcid.org/0000000287179538</orcidid><orcidid>https://orcid.org/0000000304259143</orcidid><orcidid>https://orcid.org/0000000223877791</orcidid><orcidid>https://orcid.org/000000018129444X</orcidid><orcidid>https://orcid.org/0000000185181047</orcidid><orcidid>https://orcid.org/0000000206730560</orcidid><orcidid>https://orcid.org/0000000306259892</orcidid><orcidid>https://orcid.org/0000000191740474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2022-11, Vol.8 (44), p.eabq6321-eabq6321
issn 2375-2548
2375-2548
language eng
recordid cdi_osti_scitechconnect_2420258
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects ENERGY STORAGE
Science & Technology - Other Topics
title Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20principles%20for%20heterointerfacial%20alloying%20kinetics%20at%20metallic%20anodes%20in%20rechargeable%20batteries&rft.jtitle=Science%20advances&rft.au=Zheng,%20Jingxu&rft.aucorp=State%20Univ.%20of%20New%20York%20(SUNY),%20Albany,%20NY%20(United%20States)&rft.date=2022-11-04&rft.volume=8&rft.issue=44&rft.spage=eabq6321&rft.epage=eabq6321&rft.pages=eabq6321-eabq6321&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abq6321&rft_dat=%3Cproquest_osti_%3E2732541159%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732541159&rft_id=info:pmid/&rfr_iscdi=true