Curvature-controlled geometrical lensing behavior in self-propelled colloidal particle systems

In many biological systems, the curvature of the surfaces cells live on influences their collective properties. Curvature should likewise influence the behavior of active colloidal particles. We show using molecular simulation of self-propelled active particles on surfaces of Gaussian curvature (bot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2022-11, Vol.18 (45), p.8561-8571
Hauptverfasser: Schönhöfer, Philipp W. A, Glotzer, Sharon C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8571
container_issue 45
container_start_page 8561
container_title Soft matter
container_volume 18
creator Schönhöfer, Philipp W. A
Glotzer, Sharon C
description In many biological systems, the curvature of the surfaces cells live on influences their collective properties. Curvature should likewise influence the behavior of active colloidal particles. We show using molecular simulation of self-propelled active particles on surfaces of Gaussian curvature (both positive and negative) how curvature sign and magnitude can alter the system's collective behavior. Curvature acts as a geometrical lens and shifts the critical density of motility-induced phase separation (MIPS) to lower values for positive curvature and higher values for negative curvature, which we explain theoretically by the nature of parallel lines in spherical and hyperbolic space. Curvature also fluidizes dense MIPS clusters due to the emergence of defect patterns disrupting the crystalline order inside the clusters. Using our findings, we engineer three confining surfaces that strategically combine regions of different curvature to produce a host of novel dynamical behaviors, including cyclic MIPS on spherocylinders, directionally biased cyclic MIPS on spherocones, and position dependent cluster fluctuations on metaballs. Gaussian curvature controls motility-induced phase separation of self-propelled particles confined to positively and negatively curved surfaces.
doi_str_mv 10.1039/d2sm01012g
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2419563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722314220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-4673d057413a041199bdee16317addd5e99127f7e3d6d80e0e0df5009c6454893</originalsourceid><addsrcrecordid>eNpd0U2r1DAUBuAiCo6jG_dC0Y1cqOYk6UeWMnrnXhhxoYIrSyY5ncnQNjUnHbj_3jiVESSLZPHkcF7eLHsJ7B0wod5bTgMDBvzwKFtBLWVRNbJ5fH2LH0-zZ0QnxkQjoVplPzdzOOs4ByyMH2PwfY82P6AfMAZndJ_3OJIbD_kej_rsfMjdmBP2XTEFP-GFm_TLO5vwpEN0psecHijiQM-zJ53uCV_8vdfZ99tP3zZ3xe7L9n7zYVcYISEWsqqFZWUtQWgmAZTaW0SoBNTaWluiUsDrrkZhK9swTMd2JWPKVLKUjRLr7PUy11N0LRkX0RxToBFNbLkEVVYiobcLSpv_mpFiOzgyKYIe0c_U8ppzAZJzluib_-jJz2FMEZISioGoZZPUzaJM8EQBu3YKbtDhoQXW_umj_ci_fr70sU341YIDmav715f4DdFEhzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739013748</pqid></control><display><type>article</type><title>Curvature-controlled geometrical lensing behavior in self-propelled colloidal particle systems</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Schönhöfer, Philipp W. A ; Glotzer, Sharon C</creator><creatorcontrib>Schönhöfer, Philipp W. A ; Glotzer, Sharon C ; Northwestern Univ., Evanston, IL (United States)</creatorcontrib><description>In many biological systems, the curvature of the surfaces cells live on influences their collective properties. Curvature should likewise influence the behavior of active colloidal particles. We show using molecular simulation of self-propelled active particles on surfaces of Gaussian curvature (both positive and negative) how curvature sign and magnitude can alter the system's collective behavior. Curvature acts as a geometrical lens and shifts the critical density of motility-induced phase separation (MIPS) to lower values for positive curvature and higher values for negative curvature, which we explain theoretically by the nature of parallel lines in spherical and hyperbolic space. Curvature also fluidizes dense MIPS clusters due to the emergence of defect patterns disrupting the crystalline order inside the clusters. Using our findings, we engineer three confining surfaces that strategically combine regions of different curvature to produce a host of novel dynamical behaviors, including cyclic MIPS on spherocylinders, directionally biased cyclic MIPS on spherocones, and position dependent cluster fluctuations on metaballs. Gaussian curvature controls motility-induced phase separation of self-propelled particles confined to positively and negatively curved surfaces.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d2sm01012g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Clusters ; Crystal defects ; Curvature ; Fluidizing ; Hyperbolic coordinates ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Materials Science ; Phase separation ; Physics ; Polymer Science</subject><ispartof>Soft matter, 2022-11, Vol.18 (45), p.8561-8571</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-4673d057413a041199bdee16317addd5e99127f7e3d6d80e0e0df5009c6454893</citedby><cites>FETCH-LOGICAL-c341t-4673d057413a041199bdee16317addd5e99127f7e3d6d80e0e0df5009c6454893</cites><orcidid>0000-0002-7197-0085 ; 0000-0003-4397-2937 ; 0000000271970085 ; 0000000343972937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2419563$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schönhöfer, Philipp W. A</creatorcontrib><creatorcontrib>Glotzer, Sharon C</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><title>Curvature-controlled geometrical lensing behavior in self-propelled colloidal particle systems</title><title>Soft matter</title><description>In many biological systems, the curvature of the surfaces cells live on influences their collective properties. Curvature should likewise influence the behavior of active colloidal particles. We show using molecular simulation of self-propelled active particles on surfaces of Gaussian curvature (both positive and negative) how curvature sign and magnitude can alter the system's collective behavior. Curvature acts as a geometrical lens and shifts the critical density of motility-induced phase separation (MIPS) to lower values for positive curvature and higher values for negative curvature, which we explain theoretically by the nature of parallel lines in spherical and hyperbolic space. Curvature also fluidizes dense MIPS clusters due to the emergence of defect patterns disrupting the crystalline order inside the clusters. Using our findings, we engineer three confining surfaces that strategically combine regions of different curvature to produce a host of novel dynamical behaviors, including cyclic MIPS on spherocylinders, directionally biased cyclic MIPS on spherocones, and position dependent cluster fluctuations on metaballs. Gaussian curvature controls motility-induced phase separation of self-propelled particles confined to positively and negatively curved surfaces.</description><subject>Chemistry</subject><subject>Clusters</subject><subject>Crystal defects</subject><subject>Curvature</subject><subject>Fluidizing</subject><subject>Hyperbolic coordinates</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Materials Science</subject><subject>Phase separation</subject><subject>Physics</subject><subject>Polymer Science</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0U2r1DAUBuAiCo6jG_dC0Y1cqOYk6UeWMnrnXhhxoYIrSyY5ncnQNjUnHbj_3jiVESSLZPHkcF7eLHsJ7B0wod5bTgMDBvzwKFtBLWVRNbJ5fH2LH0-zZ0QnxkQjoVplPzdzOOs4ByyMH2PwfY82P6AfMAZndJ_3OJIbD_kej_rsfMjdmBP2XTEFP-GFm_TLO5vwpEN0psecHijiQM-zJ53uCV_8vdfZ99tP3zZ3xe7L9n7zYVcYISEWsqqFZWUtQWgmAZTaW0SoBNTaWluiUsDrrkZhK9swTMd2JWPKVLKUjRLr7PUy11N0LRkX0RxToBFNbLkEVVYiobcLSpv_mpFiOzgyKYIe0c_U8ppzAZJzluib_-jJz2FMEZISioGoZZPUzaJM8EQBu3YKbtDhoQXW_umj_ci_fr70sU341YIDmav715f4DdFEhzs</recordid><startdate>20221123</startdate><enddate>20221123</enddate><creator>Schönhöfer, Philipp W. A</creator><creator>Glotzer, Sharon C</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7197-0085</orcidid><orcidid>https://orcid.org/0000-0003-4397-2937</orcidid><orcidid>https://orcid.org/0000000271970085</orcidid><orcidid>https://orcid.org/0000000343972937</orcidid></search><sort><creationdate>20221123</creationdate><title>Curvature-controlled geometrical lensing behavior in self-propelled colloidal particle systems</title><author>Schönhöfer, Philipp W. A ; Glotzer, Sharon C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-4673d057413a041199bdee16317addd5e99127f7e3d6d80e0e0df5009c6454893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>Clusters</topic><topic>Crystal defects</topic><topic>Curvature</topic><topic>Fluidizing</topic><topic>Hyperbolic coordinates</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Materials Science</topic><topic>Phase separation</topic><topic>Physics</topic><topic>Polymer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schönhöfer, Philipp W. A</creatorcontrib><creatorcontrib>Glotzer, Sharon C</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schönhöfer, Philipp W. A</au><au>Glotzer, Sharon C</au><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvature-controlled geometrical lensing behavior in self-propelled colloidal particle systems</atitle><jtitle>Soft matter</jtitle><date>2022-11-23</date><risdate>2022</risdate><volume>18</volume><issue>45</issue><spage>8561</spage><epage>8571</epage><pages>8561-8571</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>In many biological systems, the curvature of the surfaces cells live on influences their collective properties. Curvature should likewise influence the behavior of active colloidal particles. We show using molecular simulation of self-propelled active particles on surfaces of Gaussian curvature (both positive and negative) how curvature sign and magnitude can alter the system's collective behavior. Curvature acts as a geometrical lens and shifts the critical density of motility-induced phase separation (MIPS) to lower values for positive curvature and higher values for negative curvature, which we explain theoretically by the nature of parallel lines in spherical and hyperbolic space. Curvature also fluidizes dense MIPS clusters due to the emergence of defect patterns disrupting the crystalline order inside the clusters. Using our findings, we engineer three confining surfaces that strategically combine regions of different curvature to produce a host of novel dynamical behaviors, including cyclic MIPS on spherocylinders, directionally biased cyclic MIPS on spherocones, and position dependent cluster fluctuations on metaballs. Gaussian curvature controls motility-induced phase separation of self-propelled particles confined to positively and negatively curved surfaces.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2sm01012g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7197-0085</orcidid><orcidid>https://orcid.org/0000-0003-4397-2937</orcidid><orcidid>https://orcid.org/0000000271970085</orcidid><orcidid>https://orcid.org/0000000343972937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2022-11, Vol.18 (45), p.8561-8571
issn 1744-683X
1744-6848
language eng
recordid cdi_osti_scitechconnect_2419563
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemistry
Clusters
Crystal defects
Curvature
Fluidizing
Hyperbolic coordinates
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Materials Science
Phase separation
Physics
Polymer Science
title Curvature-controlled geometrical lensing behavior in self-propelled colloidal particle systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvature-controlled%20geometrical%20lensing%20behavior%20in%20self-propelled%20colloidal%20particle%20systems&rft.jtitle=Soft%20matter&rft.au=Sch%C3%B6nh%C3%B6fer,%20Philipp%20W.%20A&rft.aucorp=Northwestern%20Univ.,%20Evanston,%20IL%20(United%20States)&rft.date=2022-11-23&rft.volume=18&rft.issue=45&rft.spage=8561&rft.epage=8571&rft.pages=8561-8571&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d2sm01012g&rft_dat=%3Cproquest_osti_%3E2722314220%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739013748&rft_id=info:pmid/&rfr_iscdi=true