A theory of mechanical stress-induced H2O2 signaling waveforms in Planta
Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wa...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2023-01, Vol.86 (1), p.11, Article 11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Journal of mathematical biology |
container_volume | 86 |
creator | Porter, Thomas K. Heinz, Michael N. Lundberg, Daniel James Brooks, Allan M. Lew, Tedrick Thomas Salim Silmore, Kevin S. Koman, Volodymyr B. Ang, Mervin Chun-Yi Khong, Duc Thinh Singh, Gajendra Pratap Swan, James W. Sarojam, Rajani Chua, Nam-Hai Strano, Michael S. |
description | Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wave released upon mechanical perturbation of plant leaves appears to be conserved across a large number of species, and produces a distinct waveform from other stresses including light, heat and pathogen-associated molecular pattern (PAMP)-induced stresses. Herein, we develop a quantitative theory of the local ROS signaling waveform resulting from mechanical stress in planta. We show that nonlinear, autocatalytic production and Fickian diffusion of H
2
O
2
followed by first order decay well describes the spatial and temporal properties of the waveform. The reaction–diffusion system is analyzed in terms of a new approximate solution that we introduce for such problems based on a single term logistic function ansatz. The theory is able to describe experimental ROS waveforms and degradation dynamics such that species-dependent dimensionless wave velocities are revealed, corresponding to subtle changes in higher moments of the waveform through an apparently conserved signaling mechanism overall. This theory has utility in potentially decoding other stress signaling waveforms for light, heat and PAMP-induced stresses that are similarly under investigation. The approximate solution may also find use in applied agricultural sensing, facilitating the connection between measured waveform and plant physiology. |
doi_str_mv | 10.1007/s00285-022-01835-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2419479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747542467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-32fc13467c7909b70d4c128f1abdadb6efe0b19ad3d249f0939cbd853aafa6483</originalsourceid><addsrcrecordid>eNp9kE1LAzEARIMoWKt_wFPQczRfu9kcS1ErFOpBzyGbTdqUbVKTrdJ_b3QFb57m8mYYHgDXBN8RjMV9xpg2FcKUIkwaVqHjCZgQziginNSnYIIZZqhuCD0HFzlvMSaikmQCFjM4bGxMRxgd3Fmz0cEb3cM8JJsz8qE7GNvBBV1RmP066N6HNfzUH9bFtMvQB_jS6zDoS3DmdJ_t1W9Owdvjw-t8gZarp-f5bIkME3JAjDpDGK-FERLLVuCOG0IbR3Tb6a6trbO4JVJ3rKNcOiyZNG3XVExrp2vesCm4GXdjHrzKxg_ltIkhWDMoyonkQhbodoT2Kb4fbB7UNh5SOZ8VFVxUnJYHhaIjZVLMOVmn9snvdDoqgtW3VjVqVUWr-tGqjqXExlIucFjb9Df9T-sLChN6Xw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747542467</pqid></control><display><type>article</type><title>A theory of mechanical stress-induced H2O2 signaling waveforms in Planta</title><source>SpringerLink Journals</source><creator>Porter, Thomas K. ; Heinz, Michael N. ; Lundberg, Daniel James ; Brooks, Allan M. ; Lew, Tedrick Thomas Salim ; Silmore, Kevin S. ; Koman, Volodymyr B. ; Ang, Mervin Chun-Yi ; Khong, Duc Thinh ; Singh, Gajendra Pratap ; Swan, James W. ; Sarojam, Rajani ; Chua, Nam-Hai ; Strano, Michael S.</creator><creatorcontrib>Porter, Thomas K. ; Heinz, Michael N. ; Lundberg, Daniel James ; Brooks, Allan M. ; Lew, Tedrick Thomas Salim ; Silmore, Kevin S. ; Koman, Volodymyr B. ; Ang, Mervin Chun-Yi ; Khong, Duc Thinh ; Singh, Gajendra Pratap ; Swan, James W. ; Sarojam, Rajani ; Chua, Nam-Hai ; Strano, Michael S. ; Krell Institute, Ames, IA (United States)</creatorcontrib><description>Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wave released upon mechanical perturbation of plant leaves appears to be conserved across a large number of species, and produces a distinct waveform from other stresses including light, heat and pathogen-associated molecular pattern (PAMP)-induced stresses. Herein, we develop a quantitative theory of the local ROS signaling waveform resulting from mechanical stress in planta. We show that nonlinear, autocatalytic production and Fickian diffusion of H
2
O
2
followed by first order decay well describes the spatial and temporal properties of the waveform. The reaction–diffusion system is analyzed in terms of a new approximate solution that we introduce for such problems based on a single term logistic function ansatz. The theory is able to describe experimental ROS waveforms and degradation dynamics such that species-dependent dimensionless wave velocities are revealed, corresponding to subtle changes in higher moments of the waveform through an apparently conserved signaling mechanism overall. This theory has utility in potentially decoding other stress signaling waveforms for light, heat and PAMP-induced stresses that are similarly under investigation. The approximate solution may also find use in applied agricultural sensing, facilitating the connection between measured waveform and plant physiology.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-022-01835-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Cell cycle ; Chloroplasts ; Diffusion ; Engineering ; Flowers & plants ; Hydrogen peroxide ; Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Metabolism ; Nanotechnology ; Partial differential equations ; Pathogens ; Perturbation ; Plant physiology ; Reactive oxygen species ; Sensors ; Signaling ; Stress ; Stresses ; Wave velocity ; Waveforms</subject><ispartof>Journal of mathematical biology, 2023-01, Vol.86 (1), p.11, Article 11</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-32fc13467c7909b70d4c128f1abdadb6efe0b19ad3d249f0939cbd853aafa6483</citedby><cites>FETCH-LOGICAL-c379t-32fc13467c7909b70d4c128f1abdadb6efe0b19ad3d249f0939cbd853aafa6483</cites><orcidid>0000-0001-8480-4003 ; 0000-0001-8561-1385 ; 0000-0002-9948-8258 ; 0000-0002-4815-9921 ; 0000-0001-8464-8100 ; 0000-0003-2944-808X ; 0000000248159921 ; 0000000184648100 ; 0000000299488258 ; 0000000185611385 ; 000000032944808X ; 0000000184804003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-022-01835-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-022-01835-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2419479$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Porter, Thomas K.</creatorcontrib><creatorcontrib>Heinz, Michael N.</creatorcontrib><creatorcontrib>Lundberg, Daniel James</creatorcontrib><creatorcontrib>Brooks, Allan M.</creatorcontrib><creatorcontrib>Lew, Tedrick Thomas Salim</creatorcontrib><creatorcontrib>Silmore, Kevin S.</creatorcontrib><creatorcontrib>Koman, Volodymyr B.</creatorcontrib><creatorcontrib>Ang, Mervin Chun-Yi</creatorcontrib><creatorcontrib>Khong, Duc Thinh</creatorcontrib><creatorcontrib>Singh, Gajendra Pratap</creatorcontrib><creatorcontrib>Swan, James W.</creatorcontrib><creatorcontrib>Sarojam, Rajani</creatorcontrib><creatorcontrib>Chua, Nam-Hai</creatorcontrib><creatorcontrib>Strano, Michael S.</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><title>A theory of mechanical stress-induced H2O2 signaling waveforms in Planta</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><description>Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wave released upon mechanical perturbation of plant leaves appears to be conserved across a large number of species, and produces a distinct waveform from other stresses including light, heat and pathogen-associated molecular pattern (PAMP)-induced stresses. Herein, we develop a quantitative theory of the local ROS signaling waveform resulting from mechanical stress in planta. We show that nonlinear, autocatalytic production and Fickian diffusion of H
2
O
2
followed by first order decay well describes the spatial and temporal properties of the waveform. The reaction–diffusion system is analyzed in terms of a new approximate solution that we introduce for such problems based on a single term logistic function ansatz. The theory is able to describe experimental ROS waveforms and degradation dynamics such that species-dependent dimensionless wave velocities are revealed, corresponding to subtle changes in higher moments of the waveform through an apparently conserved signaling mechanism overall. This theory has utility in potentially decoding other stress signaling waveforms for light, heat and PAMP-induced stresses that are similarly under investigation. The approximate solution may also find use in applied agricultural sensing, facilitating the connection between measured waveform and plant physiology.</description><subject>Applications of Mathematics</subject><subject>Cell cycle</subject><subject>Chloroplasts</subject><subject>Diffusion</subject><subject>Engineering</subject><subject>Flowers & plants</subject><subject>Hydrogen peroxide</subject><subject>Life Sciences & Biomedicine - Other Topics</subject><subject>Mathematical & Computational Biology</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metabolism</subject><subject>Nanotechnology</subject><subject>Partial differential equations</subject><subject>Pathogens</subject><subject>Perturbation</subject><subject>Plant physiology</subject><subject>Reactive oxygen species</subject><subject>Sensors</subject><subject>Signaling</subject><subject>Stress</subject><subject>Stresses</subject><subject>Wave velocity</subject><subject>Waveforms</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEARIMoWKt_wFPQczRfu9kcS1ErFOpBzyGbTdqUbVKTrdJ_b3QFb57m8mYYHgDXBN8RjMV9xpg2FcKUIkwaVqHjCZgQziginNSnYIIZZqhuCD0HFzlvMSaikmQCFjM4bGxMRxgd3Fmz0cEb3cM8JJsz8qE7GNvBBV1RmP066N6HNfzUH9bFtMvQB_jS6zDoS3DmdJ_t1W9Owdvjw-t8gZarp-f5bIkME3JAjDpDGK-FERLLVuCOG0IbR3Tb6a6trbO4JVJ3rKNcOiyZNG3XVExrp2vesCm4GXdjHrzKxg_ltIkhWDMoyonkQhbodoT2Kb4fbB7UNh5SOZ8VFVxUnJYHhaIjZVLMOVmn9snvdDoqgtW3VjVqVUWr-tGqjqXExlIucFjb9Df9T-sLChN6Xw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Porter, Thomas K.</creator><creator>Heinz, Michael N.</creator><creator>Lundberg, Daniel James</creator><creator>Brooks, Allan M.</creator><creator>Lew, Tedrick Thomas Salim</creator><creator>Silmore, Kevin S.</creator><creator>Koman, Volodymyr B.</creator><creator>Ang, Mervin Chun-Yi</creator><creator>Khong, Duc Thinh</creator><creator>Singh, Gajendra Pratap</creator><creator>Swan, James W.</creator><creator>Sarojam, Rajani</creator><creator>Chua, Nam-Hai</creator><creator>Strano, Michael S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8480-4003</orcidid><orcidid>https://orcid.org/0000-0001-8561-1385</orcidid><orcidid>https://orcid.org/0000-0002-9948-8258</orcidid><orcidid>https://orcid.org/0000-0002-4815-9921</orcidid><orcidid>https://orcid.org/0000-0001-8464-8100</orcidid><orcidid>https://orcid.org/0000-0003-2944-808X</orcidid><orcidid>https://orcid.org/0000000248159921</orcidid><orcidid>https://orcid.org/0000000184648100</orcidid><orcidid>https://orcid.org/0000000299488258</orcidid><orcidid>https://orcid.org/0000000185611385</orcidid><orcidid>https://orcid.org/000000032944808X</orcidid><orcidid>https://orcid.org/0000000184804003</orcidid></search><sort><creationdate>20230101</creationdate><title>A theory of mechanical stress-induced H2O2 signaling waveforms in Planta</title><author>Porter, Thomas K. ; Heinz, Michael N. ; Lundberg, Daniel James ; Brooks, Allan M. ; Lew, Tedrick Thomas Salim ; Silmore, Kevin S. ; Koman, Volodymyr B. ; Ang, Mervin Chun-Yi ; Khong, Duc Thinh ; Singh, Gajendra Pratap ; Swan, James W. ; Sarojam, Rajani ; Chua, Nam-Hai ; Strano, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-32fc13467c7909b70d4c128f1abdadb6efe0b19ad3d249f0939cbd853aafa6483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Cell cycle</topic><topic>Chloroplasts</topic><topic>Diffusion</topic><topic>Engineering</topic><topic>Flowers & plants</topic><topic>Hydrogen peroxide</topic><topic>Life Sciences & Biomedicine - Other Topics</topic><topic>Mathematical & Computational Biology</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metabolism</topic><topic>Nanotechnology</topic><topic>Partial differential equations</topic><topic>Pathogens</topic><topic>Perturbation</topic><topic>Plant physiology</topic><topic>Reactive oxygen species</topic><topic>Sensors</topic><topic>Signaling</topic><topic>Stress</topic><topic>Stresses</topic><topic>Wave velocity</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porter, Thomas K.</creatorcontrib><creatorcontrib>Heinz, Michael N.</creatorcontrib><creatorcontrib>Lundberg, Daniel James</creatorcontrib><creatorcontrib>Brooks, Allan M.</creatorcontrib><creatorcontrib>Lew, Tedrick Thomas Salim</creatorcontrib><creatorcontrib>Silmore, Kevin S.</creatorcontrib><creatorcontrib>Koman, Volodymyr B.</creatorcontrib><creatorcontrib>Ang, Mervin Chun-Yi</creatorcontrib><creatorcontrib>Khong, Duc Thinh</creatorcontrib><creatorcontrib>Singh, Gajendra Pratap</creatorcontrib><creatorcontrib>Swan, James W.</creatorcontrib><creatorcontrib>Sarojam, Rajani</creatorcontrib><creatorcontrib>Chua, Nam-Hai</creatorcontrib><creatorcontrib>Strano, Michael S.</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porter, Thomas K.</au><au>Heinz, Michael N.</au><au>Lundberg, Daniel James</au><au>Brooks, Allan M.</au><au>Lew, Tedrick Thomas Salim</au><au>Silmore, Kevin S.</au><au>Koman, Volodymyr B.</au><au>Ang, Mervin Chun-Yi</au><au>Khong, Duc Thinh</au><au>Singh, Gajendra Pratap</au><au>Swan, James W.</au><au>Sarojam, Rajani</au><au>Chua, Nam-Hai</au><au>Strano, Michael S.</au><aucorp>Krell Institute, Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theory of mechanical stress-induced H2O2 signaling waveforms in Planta</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>86</volume><issue>1</issue><spage>11</spage><pages>11-</pages><artnum>11</artnum><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wave released upon mechanical perturbation of plant leaves appears to be conserved across a large number of species, and produces a distinct waveform from other stresses including light, heat and pathogen-associated molecular pattern (PAMP)-induced stresses. Herein, we develop a quantitative theory of the local ROS signaling waveform resulting from mechanical stress in planta. We show that nonlinear, autocatalytic production and Fickian diffusion of H
2
O
2
followed by first order decay well describes the spatial and temporal properties of the waveform. The reaction–diffusion system is analyzed in terms of a new approximate solution that we introduce for such problems based on a single term logistic function ansatz. The theory is able to describe experimental ROS waveforms and degradation dynamics such that species-dependent dimensionless wave velocities are revealed, corresponding to subtle changes in higher moments of the waveform through an apparently conserved signaling mechanism overall. This theory has utility in potentially decoding other stress signaling waveforms for light, heat and PAMP-induced stresses that are similarly under investigation. The approximate solution may also find use in applied agricultural sensing, facilitating the connection between measured waveform and plant physiology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00285-022-01835-y</doi><orcidid>https://orcid.org/0000-0001-8480-4003</orcidid><orcidid>https://orcid.org/0000-0001-8561-1385</orcidid><orcidid>https://orcid.org/0000-0002-9948-8258</orcidid><orcidid>https://orcid.org/0000-0002-4815-9921</orcidid><orcidid>https://orcid.org/0000-0001-8464-8100</orcidid><orcidid>https://orcid.org/0000-0003-2944-808X</orcidid><orcidid>https://orcid.org/0000000248159921</orcidid><orcidid>https://orcid.org/0000000184648100</orcidid><orcidid>https://orcid.org/0000000299488258</orcidid><orcidid>https://orcid.org/0000000185611385</orcidid><orcidid>https://orcid.org/000000032944808X</orcidid><orcidid>https://orcid.org/0000000184804003</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2023-01, Vol.86 (1), p.11, Article 11 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_osti_scitechconnect_2419479 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Cell cycle Chloroplasts Diffusion Engineering Flowers & plants Hydrogen peroxide Life Sciences & Biomedicine - Other Topics Mathematical & Computational Biology Mathematical and Computational Biology Mathematics Mathematics and Statistics Metabolism Nanotechnology Partial differential equations Pathogens Perturbation Plant physiology Reactive oxygen species Sensors Signaling Stress Stresses Wave velocity Waveforms |
title | A theory of mechanical stress-induced H2O2 signaling waveforms in Planta |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theory%20of%20mechanical%20stress-induced%20H2O2%20signaling%20waveforms%20in%20Planta&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Porter,%20Thomas%20K.&rft.aucorp=Krell%20Institute,%20Ames,%20IA%20(United%20States)&rft.date=2023-01-01&rft.volume=86&rft.issue=1&rft.spage=11&rft.pages=11-&rft.artnum=11&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-022-01835-y&rft_dat=%3Cproquest_osti_%3E2747542467%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747542467&rft_id=info:pmid/&rfr_iscdi=true |