Single-Step Selective Oxidation of Methane by Iron-Oxo Species in the Metal–Organic Framework MFU-4l
The direct and selective conversion of methane to methanol can be considered a holy grail for catalysis research. In this work, we study a metal–organic framework known as MFU-4l, modified by design to include highly reactive iron-oxo species for the catalytic C–H bond activation of methane. We inve...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2023-08, Vol.127 (31), p.15227-15238 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15238 |
---|---|
container_issue | 31 |
container_start_page | 15227 |
container_title | Journal of physical chemistry. C |
container_volume | 127 |
creator | Melix, Patrick Snurr, Randall Q. |
description | The direct and selective conversion of methane to methanol can be considered a holy grail for catalysis research. In this work, we study a metal–organic framework known as MFU-4l, modified by design to include highly reactive iron-oxo species for the catalytic C–H bond activation of methane. We investigate the oxidation of methane and the further potential oxidation of the product methanol using N2O as an oxygen source and map the potential energy landscape of these reactions using density functional theory calculations. We show that the highest energy barrier encountered during the methane oxidation process is not the C–H bond breaking but the activation of the iron center by N2O. Furthermore, the potential energy landscape for the C–H bond activation exhibits a large, high-energy plateau region instead of a sharp transition state, thus differing from the traditional radical rebound mechanism. This insight offers interesting potential routes to enhance the catalytic activity of the catalyst, to hinder unwanted deactivation pathways, and to reduce the activity toward the over-oxidation of the product. |
doi_str_mv | 10.1021/acs.jpcc.3c03247 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2418973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c247747778</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-52361174d2054de4565881359766c4d4b92203aabb3bdc203b086b3f6bfaac3a3</originalsourceid><addsrcrecordid>eNp1kMtOAjEUhhujiYjuXTauHextbktDREkwLEbWTdvpQHFoJ21V2PkOvqFP4iDEnavzJ-f7T3I-AK4xGmFE8J1QYbTulBpRhShh-QkY4JKSJGdpevqXWX4OLkJYI5RShOkANJWxy1YnVdQdrHSrVTTvGs63phbROAtdA591XAmrodzBqXc2mW8drDqtjA7QWBhXeo-I9vvza-6XwhoFJ15s9Ifzr_B5skhYewnOGtEGfXWcQ7CYPLyMn5LZ_HE6vp8lgmQoJimhGcY5qwlKWa1ZmqVFgWla5lmmWM1kSQiiQkhJZa36KFGRSdpkshFCUUGH4OZw14VoeFAmarVSztr-L04YLsqc9hA6QMq7ELxueOfNRvgdx4jvZfJeJt_L5EeZfeX2UPnduDdv-y_-x38A7jB4Nw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single-Step Selective Oxidation of Methane by Iron-Oxo Species in the Metal–Organic Framework MFU-4l</title><source>ACS Publications</source><creator>Melix, Patrick ; Snurr, Randall Q.</creator><creatorcontrib>Melix, Patrick ; Snurr, Randall Q. ; Univ. of California, Oakland, CA (United States) ; Northwestern Univ., Evanston, IL (United States)</creatorcontrib><description>The direct and selective conversion of methane to methanol can be considered a holy grail for catalysis research. In this work, we study a metal–organic framework known as MFU-4l, modified by design to include highly reactive iron-oxo species for the catalytic C–H bond activation of methane. We investigate the oxidation of methane and the further potential oxidation of the product methanol using N2O as an oxygen source and map the potential energy landscape of these reactions using density functional theory calculations. We show that the highest energy barrier encountered during the methane oxidation process is not the C–H bond breaking but the activation of the iron center by N2O. Furthermore, the potential energy landscape for the C–H bond activation exhibits a large, high-energy plateau region instead of a sharp transition state, thus differing from the traditional radical rebound mechanism. This insight offers interesting potential routes to enhance the catalytic activity of the catalyst, to hinder unwanted deactivation pathways, and to reduce the activity toward the over-oxidation of the product.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c03247</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces ; Chemistry ; Materials Science ; Science & Technology - Other Topics</subject><ispartof>Journal of physical chemistry. C, 2023-08, Vol.127 (31), p.15227-15238</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a260t-52361174d2054de4565881359766c4d4b92203aabb3bdc203b086b3f6bfaac3a3</cites><orcidid>0000-0003-2925-9246 ; 0000-0002-1027-1272 ; 0000000210271272 ; 0000000329259246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.3c03247$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c03247$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2418973$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Melix, Patrick</creatorcontrib><creatorcontrib>Snurr, Randall Q.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><title>Single-Step Selective Oxidation of Methane by Iron-Oxo Species in the Metal–Organic Framework MFU-4l</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The direct and selective conversion of methane to methanol can be considered a holy grail for catalysis research. In this work, we study a metal–organic framework known as MFU-4l, modified by design to include highly reactive iron-oxo species for the catalytic C–H bond activation of methane. We investigate the oxidation of methane and the further potential oxidation of the product methanol using N2O as an oxygen source and map the potential energy landscape of these reactions using density functional theory calculations. We show that the highest energy barrier encountered during the methane oxidation process is not the C–H bond breaking but the activation of the iron center by N2O. Furthermore, the potential energy landscape for the C–H bond activation exhibits a large, high-energy plateau region instead of a sharp transition state, thus differing from the traditional radical rebound mechanism. This insight offers interesting potential routes to enhance the catalytic activity of the catalyst, to hinder unwanted deactivation pathways, and to reduce the activity toward the over-oxidation of the product.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><subject>Chemistry</subject><subject>Materials Science</subject><subject>Science & Technology - Other Topics</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOAjEUhhujiYjuXTauHextbktDREkwLEbWTdvpQHFoJ21V2PkOvqFP4iDEnavzJ-f7T3I-AK4xGmFE8J1QYbTulBpRhShh-QkY4JKSJGdpevqXWX4OLkJYI5RShOkANJWxy1YnVdQdrHSrVTTvGs63phbROAtdA591XAmrodzBqXc2mW8drDqtjA7QWBhXeo-I9vvza-6XwhoFJ15s9Ifzr_B5skhYewnOGtEGfXWcQ7CYPLyMn5LZ_HE6vp8lgmQoJimhGcY5qwlKWa1ZmqVFgWla5lmmWM1kSQiiQkhJZa36KFGRSdpkshFCUUGH4OZw14VoeFAmarVSztr-L04YLsqc9hA6QMq7ELxueOfNRvgdx4jvZfJeJt_L5EeZfeX2UPnduDdv-y_-x38A7jB4Nw</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Melix, Patrick</creator><creator>Snurr, Randall Q.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2925-9246</orcidid><orcidid>https://orcid.org/0000-0002-1027-1272</orcidid><orcidid>https://orcid.org/0000000210271272</orcidid><orcidid>https://orcid.org/0000000329259246</orcidid></search><sort><creationdate>20230810</creationdate><title>Single-Step Selective Oxidation of Methane by Iron-Oxo Species in the Metal–Organic Framework MFU-4l</title><author>Melix, Patrick ; Snurr, Randall Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-52361174d2054de4565881359766c4d4b92203aabb3bdc203b086b3f6bfaac3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><topic>Chemistry</topic><topic>Materials Science</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melix, Patrick</creatorcontrib><creatorcontrib>Snurr, Randall Q.</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melix, Patrick</au><au>Snurr, Randall Q.</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Step Selective Oxidation of Methane by Iron-Oxo Species in the Metal–Organic Framework MFU-4l</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-08-10</date><risdate>2023</risdate><volume>127</volume><issue>31</issue><spage>15227</spage><epage>15238</epage><pages>15227-15238</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The direct and selective conversion of methane to methanol can be considered a holy grail for catalysis research. In this work, we study a metal–organic framework known as MFU-4l, modified by design to include highly reactive iron-oxo species for the catalytic C–H bond activation of methane. We investigate the oxidation of methane and the further potential oxidation of the product methanol using N2O as an oxygen source and map the potential energy landscape of these reactions using density functional theory calculations. We show that the highest energy barrier encountered during the methane oxidation process is not the C–H bond breaking but the activation of the iron center by N2O. Furthermore, the potential energy landscape for the C–H bond activation exhibits a large, high-energy plateau region instead of a sharp transition state, thus differing from the traditional radical rebound mechanism. This insight offers interesting potential routes to enhance the catalytic activity of the catalyst, to hinder unwanted deactivation pathways, and to reduce the activity toward the over-oxidation of the product.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.3c03247</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2925-9246</orcidid><orcidid>https://orcid.org/0000-0002-1027-1272</orcidid><orcidid>https://orcid.org/0000000210271272</orcidid><orcidid>https://orcid.org/0000000329259246</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2023-08, Vol.127 (31), p.15227-15238 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_2418973 |
source | ACS Publications |
subjects | C: Chemical and Catalytic Reactivity at Interfaces Chemistry Materials Science Science & Technology - Other Topics |
title | Single-Step Selective Oxidation of Methane by Iron-Oxo Species in the Metal–Organic Framework MFU-4l |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Step%20Selective%20Oxidation%20of%20Methane%20by%20Iron-Oxo%20Species%20in%20the%20Metal%E2%80%93Organic%20Framework%20MFU-4l&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Melix,%20Patrick&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2023-08-10&rft.volume=127&rft.issue=31&rft.spage=15227&rft.epage=15238&rft.pages=15227-15238&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c03247&rft_dat=%3Cacs_osti_%3Ec247747778%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |