High resolution electronic spectroscopy of uranium mononitride, UN
The isoelectronic molecules UN and UO+ are known to have Ω = 3.5 and Ω = 4.5 ground states, respectively (where Ω is the unsigned projection of the electronic angular momentum along the internuclear axis). A ligand field theory model has been proposed to account for the difference [Matthew and Morse...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-06, Vol.158 (24) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Le, Anh T. Bai, Xi-lin Heaven, Michael C. Steimle, Timothy C. |
description | The isoelectronic molecules UN and UO+ are known to have Ω = 3.5 and Ω = 4.5 ground states, respectively (where Ω is the unsigned projection of the electronic angular momentum along the internuclear axis). A ligand field theory model has been proposed to account for the difference [Matthew and Morse, J. Chem. Phys. 138, 184303 (2013)]. The ground state of UO+ arises from the U3+(5f3(4I4.5))O2− configuration. Owing to the higher nominal charge of the N3− ligand, the U3+ ion in UN is stabilized by promoting one of the 5f electrons to the more polarizable 7s orbital, reducing the repulsive interaction with the ligand and rendering U3+(5f27s(4H3.5))N3− the lowest energy configuration. In the present work, we have advanced the characterization of the UN ground state through studies of two electronic transitions, [18.35]4.5-X(1)3.5 and [18.63]4.5-X(1)3.5, using sub-Doppler laser excitation techniques with fluorescence detection. Spectra were recorded under field-free conditions and in the presence of static electric or magnetic fields. The ground state electric dipole moment [μ = 4.30(2) D] and magnetic ge-factor [2.160(9)] were determined from these data. These values were both consistent with the 5f27s configurational assignment. Dispersed fluorescence measurements were used to determine vibrational constants for the ground and first electronically excited states. Electric dipole moments and magnetic ge-factors are also reported for the higher-energy electronically excited states. |
doi_str_mv | 10.1063/5.0157884 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2418930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828497139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-ed97193fc6cde3b9b54962a00d25cb4985474a1a10f6693dd145793e0244bf633</originalsourceid><addsrcrecordid>eNp90MlKxTAUBuAgil6HhS8gRTcqVk-GJs1SxQkuutF1aNNUI21Tk1bw7c0dVFBwlUA-_pzzI7SL4RQDp2fZKeBM5DlbQRMMuUwFl7CKJgAEp5ID30CbIbwCABaEraMNKigTmPAJuri1zy-JN8E142Bdl5jG6MG7zuok9PNr0K7_SFydjL7o7Ngmrevi--BtZU6Sp_tttFYXTTA7y3MLPV1fPV7eptOHm7vL82mqqYAhNZUUWNJac10ZWsoyY5KTAqAimS6ZzDMmWIELDDXnklYVZpmQ1ABhrKw5pVtof5HrwmBV0HYw-kW7rotTKsJwLilEdLhAvXdvowmDam3QpmmKzrgxKJKTXAgqGIv04Bd9daPv4gpzxeK4VEZ1tFA6NhG8qVXvbVv4D4VBzdpXmVq2H-3eMnEsW1N9y6-6IzhegNn0xazvb_Pu_E-S6qv6P_z3608T9pjN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828497139</pqid></control><display><type>article</type><title>High resolution electronic spectroscopy of uranium mononitride, UN</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Le, Anh T. ; Bai, Xi-lin ; Heaven, Michael C. ; Steimle, Timothy C.</creator><creatorcontrib>Le, Anh T. ; Bai, Xi-lin ; Heaven, Michael C. ; Steimle, Timothy C. ; Emory Univ., Atlanta, GA (United States)</creatorcontrib><description>The isoelectronic molecules UN and UO+ are known to have Ω = 3.5 and Ω = 4.5 ground states, respectively (where Ω is the unsigned projection of the electronic angular momentum along the internuclear axis). A ligand field theory model has been proposed to account for the difference [Matthew and Morse, J. Chem. Phys. 138, 184303 (2013)]. The ground state of UO+ arises from the U3+(5f3(4I4.5))O2− configuration. Owing to the higher nominal charge of the N3− ligand, the U3+ ion in UN is stabilized by promoting one of the 5f electrons to the more polarizable 7s orbital, reducing the repulsive interaction with the ligand and rendering U3+(5f27s(4H3.5))N3− the lowest energy configuration. In the present work, we have advanced the characterization of the UN ground state through studies of two electronic transitions, [18.35]4.5-X(1)3.5 and [18.63]4.5-X(1)3.5, using sub-Doppler laser excitation techniques with fluorescence detection. Spectra were recorded under field-free conditions and in the presence of static electric or magnetic fields. The ground state electric dipole moment [μ = 4.30(2) D] and magnetic ge-factor [2.160(9)] were determined from these data. These values were both consistent with the 5f27s configurational assignment. Dispersed fluorescence measurements were used to determine vibrational constants for the ground and first electronically excited states. Electric dipole moments and magnetic ge-factors are also reported for the higher-energy electronically excited states.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0157884</identifier><identifier>PMID: 37347126</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Angular momentum ; Chemistry ; Configurations ; Dipole moments ; Electric dipoles ; Electron transitions ; Excitation ; Field theory ; Fluorescence ; Ground state ; Ligands ; Physics ; Spectrum analysis ; Uranium</subject><ispartof>The Journal of chemical physics, 2023-06, Vol.158 (24)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-ed97193fc6cde3b9b54962a00d25cb4985474a1a10f6693dd145793e0244bf633</cites><orcidid>0000-0003-4738-2408 ; 0000-0002-5859-9461 ; 0000000347382408 ; 0000000258599461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0157884$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37347126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2418930$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Le, Anh T.</creatorcontrib><creatorcontrib>Bai, Xi-lin</creatorcontrib><creatorcontrib>Heaven, Michael C.</creatorcontrib><creatorcontrib>Steimle, Timothy C.</creatorcontrib><creatorcontrib>Emory Univ., Atlanta, GA (United States)</creatorcontrib><title>High resolution electronic spectroscopy of uranium mononitride, UN</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The isoelectronic molecules UN and UO+ are known to have Ω = 3.5 and Ω = 4.5 ground states, respectively (where Ω is the unsigned projection of the electronic angular momentum along the internuclear axis). A ligand field theory model has been proposed to account for the difference [Matthew and Morse, J. Chem. Phys. 138, 184303 (2013)]. The ground state of UO+ arises from the U3+(5f3(4I4.5))O2− configuration. Owing to the higher nominal charge of the N3− ligand, the U3+ ion in UN is stabilized by promoting one of the 5f electrons to the more polarizable 7s orbital, reducing the repulsive interaction with the ligand and rendering U3+(5f27s(4H3.5))N3− the lowest energy configuration. In the present work, we have advanced the characterization of the UN ground state through studies of two electronic transitions, [18.35]4.5-X(1)3.5 and [18.63]4.5-X(1)3.5, using sub-Doppler laser excitation techniques with fluorescence detection. Spectra were recorded under field-free conditions and in the presence of static electric or magnetic fields. The ground state electric dipole moment [μ = 4.30(2) D] and magnetic ge-factor [2.160(9)] were determined from these data. These values were both consistent with the 5f27s configurational assignment. Dispersed fluorescence measurements were used to determine vibrational constants for the ground and first electronically excited states. Electric dipole moments and magnetic ge-factors are also reported for the higher-energy electronically excited states.</description><subject>Angular momentum</subject><subject>Chemistry</subject><subject>Configurations</subject><subject>Dipole moments</subject><subject>Electric dipoles</subject><subject>Electron transitions</subject><subject>Excitation</subject><subject>Field theory</subject><subject>Fluorescence</subject><subject>Ground state</subject><subject>Ligands</subject><subject>Physics</subject><subject>Spectrum analysis</subject><subject>Uranium</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MlKxTAUBuAgil6HhS8gRTcqVk-GJs1SxQkuutF1aNNUI21Tk1bw7c0dVFBwlUA-_pzzI7SL4RQDp2fZKeBM5DlbQRMMuUwFl7CKJgAEp5ID30CbIbwCABaEraMNKigTmPAJuri1zy-JN8E142Bdl5jG6MG7zuok9PNr0K7_SFydjL7o7Ngmrevi--BtZU6Sp_tttFYXTTA7y3MLPV1fPV7eptOHm7vL82mqqYAhNZUUWNJac10ZWsoyY5KTAqAimS6ZzDMmWIELDDXnklYVZpmQ1ABhrKw5pVtof5HrwmBV0HYw-kW7rotTKsJwLilEdLhAvXdvowmDam3QpmmKzrgxKJKTXAgqGIv04Bd9daPv4gpzxeK4VEZ1tFA6NhG8qVXvbVv4D4VBzdpXmVq2H-3eMnEsW1N9y6-6IzhegNn0xazvb_Pu_E-S6qv6P_z3608T9pjN</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Le, Anh T.</creator><creator>Bai, Xi-lin</creator><creator>Heaven, Michael C.</creator><creator>Steimle, Timothy C.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4738-2408</orcidid><orcidid>https://orcid.org/0000-0002-5859-9461</orcidid><orcidid>https://orcid.org/0000000347382408</orcidid><orcidid>https://orcid.org/0000000258599461</orcidid></search><sort><creationdate>20230628</creationdate><title>High resolution electronic spectroscopy of uranium mononitride, UN</title><author>Le, Anh T. ; Bai, Xi-lin ; Heaven, Michael C. ; Steimle, Timothy C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-ed97193fc6cde3b9b54962a00d25cb4985474a1a10f6693dd145793e0244bf633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angular momentum</topic><topic>Chemistry</topic><topic>Configurations</topic><topic>Dipole moments</topic><topic>Electric dipoles</topic><topic>Electron transitions</topic><topic>Excitation</topic><topic>Field theory</topic><topic>Fluorescence</topic><topic>Ground state</topic><topic>Ligands</topic><topic>Physics</topic><topic>Spectrum analysis</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Anh T.</creatorcontrib><creatorcontrib>Bai, Xi-lin</creatorcontrib><creatorcontrib>Heaven, Michael C.</creatorcontrib><creatorcontrib>Steimle, Timothy C.</creatorcontrib><creatorcontrib>Emory Univ., Atlanta, GA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Anh T.</au><au>Bai, Xi-lin</au><au>Heaven, Michael C.</au><au>Steimle, Timothy C.</au><aucorp>Emory Univ., Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High resolution electronic spectroscopy of uranium mononitride, UN</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-06-28</date><risdate>2023</risdate><volume>158</volume><issue>24</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The isoelectronic molecules UN and UO+ are known to have Ω = 3.5 and Ω = 4.5 ground states, respectively (where Ω is the unsigned projection of the electronic angular momentum along the internuclear axis). A ligand field theory model has been proposed to account for the difference [Matthew and Morse, J. Chem. Phys. 138, 184303 (2013)]. The ground state of UO+ arises from the U3+(5f3(4I4.5))O2− configuration. Owing to the higher nominal charge of the N3− ligand, the U3+ ion in UN is stabilized by promoting one of the 5f electrons to the more polarizable 7s orbital, reducing the repulsive interaction with the ligand and rendering U3+(5f27s(4H3.5))N3− the lowest energy configuration. In the present work, we have advanced the characterization of the UN ground state through studies of two electronic transitions, [18.35]4.5-X(1)3.5 and [18.63]4.5-X(1)3.5, using sub-Doppler laser excitation techniques with fluorescence detection. Spectra were recorded under field-free conditions and in the presence of static electric or magnetic fields. The ground state electric dipole moment [μ = 4.30(2) D] and magnetic ge-factor [2.160(9)] were determined from these data. These values were both consistent with the 5f27s configurational assignment. Dispersed fluorescence measurements were used to determine vibrational constants for the ground and first electronically excited states. Electric dipole moments and magnetic ge-factors are also reported for the higher-energy electronically excited states.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37347126</pmid><doi>10.1063/5.0157884</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4738-2408</orcidid><orcidid>https://orcid.org/0000-0002-5859-9461</orcidid><orcidid>https://orcid.org/0000000347382408</orcidid><orcidid>https://orcid.org/0000000258599461</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-06, Vol.158 (24) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_2418930 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Angular momentum Chemistry Configurations Dipole moments Electric dipoles Electron transitions Excitation Field theory Fluorescence Ground state Ligands Physics Spectrum analysis Uranium |
title | High resolution electronic spectroscopy of uranium mononitride, UN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20resolution%20electronic%20spectroscopy%20of%20uranium%20mononitride,%20UN&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Le,%20Anh%20T.&rft.aucorp=Emory%20Univ.,%20Atlanta,%20GA%20(United%20States)&rft.date=2023-06-28&rft.volume=158&rft.issue=24&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0157884&rft_dat=%3Cproquest_osti_%3E2828497139%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828497139&rft_id=info:pmid/37347126&rfr_iscdi=true |