High resolution electronic spectroscopy of uranium mononitride, UN

The isoelectronic molecules UN and UO+ are known to have Ω = 3.5 and Ω = 4.5 ground states, respectively (where Ω is the unsigned projection of the electronic angular momentum along the internuclear axis). A ligand field theory model has been proposed to account for the difference [Matthew and Morse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-06, Vol.158 (24)
Hauptverfasser: Le, Anh T., Bai, Xi-lin, Heaven, Michael C., Steimle, Timothy C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title The Journal of chemical physics
container_volume 158
creator Le, Anh T.
Bai, Xi-lin
Heaven, Michael C.
Steimle, Timothy C.
description The isoelectronic molecules UN and UO+ are known to have Ω = 3.5 and Ω = 4.5 ground states, respectively (where Ω is the unsigned projection of the electronic angular momentum along the internuclear axis). A ligand field theory model has been proposed to account for the difference [Matthew and Morse, J. Chem. Phys. 138, 184303 (2013)]. The ground state of UO+ arises from the U3+(5f3(4I4.5))O2− configuration. Owing to the higher nominal charge of the N3− ligand, the U3+ ion in UN is stabilized by promoting one of the 5f electrons to the more polarizable 7s orbital, reducing the repulsive interaction with the ligand and rendering U3+(5f27s(4H3.5))N3− the lowest energy configuration. In the present work, we have advanced the characterization of the UN ground state through studies of two electronic transitions, [18.35]4.5-X(1)3.5 and [18.63]4.5-X(1)3.5, using sub-Doppler laser excitation techniques with fluorescence detection. Spectra were recorded under field-free conditions and in the presence of static electric or magnetic fields. The ground state electric dipole moment [μ = 4.30(2) D] and magnetic ge-factor [2.160(9)] were determined from these data. These values were both consistent with the 5f27s configurational assignment. Dispersed fluorescence measurements were used to determine vibrational constants for the ground and first electronically excited states. Electric dipole moments and magnetic ge-factors are also reported for the higher-energy electronically excited states.
doi_str_mv 10.1063/5.0157884
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2418930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828497139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-ed97193fc6cde3b9b54962a00d25cb4985474a1a10f6693dd145793e0244bf633</originalsourceid><addsrcrecordid>eNp90MlKxTAUBuAgil6HhS8gRTcqVk-GJs1SxQkuutF1aNNUI21Tk1bw7c0dVFBwlUA-_pzzI7SL4RQDp2fZKeBM5DlbQRMMuUwFl7CKJgAEp5ID30CbIbwCABaEraMNKigTmPAJuri1zy-JN8E142Bdl5jG6MG7zuok9PNr0K7_SFydjL7o7Ngmrevi--BtZU6Sp_tttFYXTTA7y3MLPV1fPV7eptOHm7vL82mqqYAhNZUUWNJac10ZWsoyY5KTAqAimS6ZzDMmWIELDDXnklYVZpmQ1ABhrKw5pVtof5HrwmBV0HYw-kW7rotTKsJwLilEdLhAvXdvowmDam3QpmmKzrgxKJKTXAgqGIv04Bd9daPv4gpzxeK4VEZ1tFA6NhG8qVXvbVv4D4VBzdpXmVq2H-3eMnEsW1N9y6-6IzhegNn0xazvb_Pu_E-S6qv6P_z3608T9pjN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828497139</pqid></control><display><type>article</type><title>High resolution electronic spectroscopy of uranium mononitride, UN</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Le, Anh T. ; Bai, Xi-lin ; Heaven, Michael C. ; Steimle, Timothy C.</creator><creatorcontrib>Le, Anh T. ; Bai, Xi-lin ; Heaven, Michael C. ; Steimle, Timothy C. ; Emory Univ., Atlanta, GA (United States)</creatorcontrib><description>The isoelectronic molecules UN and UO+ are known to have Ω = 3.5 and Ω = 4.5 ground states, respectively (where Ω is the unsigned projection of the electronic angular momentum along the internuclear axis). A ligand field theory model has been proposed to account for the difference [Matthew and Morse, J. Chem. Phys. 138, 184303 (2013)]. The ground state of UO+ arises from the U3+(5f3(4I4.5))O2− configuration. Owing to the higher nominal charge of the N3− ligand, the U3+ ion in UN is stabilized by promoting one of the 5f electrons to the more polarizable 7s orbital, reducing the repulsive interaction with the ligand and rendering U3+(5f27s(4H3.5))N3− the lowest energy configuration. In the present work, we have advanced the characterization of the UN ground state through studies of two electronic transitions, [18.35]4.5-X(1)3.5 and [18.63]4.5-X(1)3.5, using sub-Doppler laser excitation techniques with fluorescence detection. Spectra were recorded under field-free conditions and in the presence of static electric or magnetic fields. The ground state electric dipole moment [μ = 4.30(2) D] and magnetic ge-factor [2.160(9)] were determined from these data. These values were both consistent with the 5f27s configurational assignment. Dispersed fluorescence measurements were used to determine vibrational constants for the ground and first electronically excited states. Electric dipole moments and magnetic ge-factors are also reported for the higher-energy electronically excited states.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0157884</identifier><identifier>PMID: 37347126</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Angular momentum ; Chemistry ; Configurations ; Dipole moments ; Electric dipoles ; Electron transitions ; Excitation ; Field theory ; Fluorescence ; Ground state ; Ligands ; Physics ; Spectrum analysis ; Uranium</subject><ispartof>The Journal of chemical physics, 2023-06, Vol.158 (24)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-ed97193fc6cde3b9b54962a00d25cb4985474a1a10f6693dd145793e0244bf633</cites><orcidid>0000-0003-4738-2408 ; 0000-0002-5859-9461 ; 0000000347382408 ; 0000000258599461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0157884$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37347126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2418930$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Le, Anh T.</creatorcontrib><creatorcontrib>Bai, Xi-lin</creatorcontrib><creatorcontrib>Heaven, Michael C.</creatorcontrib><creatorcontrib>Steimle, Timothy C.</creatorcontrib><creatorcontrib>Emory Univ., Atlanta, GA (United States)</creatorcontrib><title>High resolution electronic spectroscopy of uranium mononitride, UN</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The isoelectronic molecules UN and UO+ are known to have Ω = 3.5 and Ω = 4.5 ground states, respectively (where Ω is the unsigned projection of the electronic angular momentum along the internuclear axis). A ligand field theory model has been proposed to account for the difference [Matthew and Morse, J. Chem. Phys. 138, 184303 (2013)]. The ground state of UO+ arises from the U3+(5f3(4I4.5))O2− configuration. Owing to the higher nominal charge of the N3− ligand, the U3+ ion in UN is stabilized by promoting one of the 5f electrons to the more polarizable 7s orbital, reducing the repulsive interaction with the ligand and rendering U3+(5f27s(4H3.5))N3− the lowest energy configuration. In the present work, we have advanced the characterization of the UN ground state through studies of two electronic transitions, [18.35]4.5-X(1)3.5 and [18.63]4.5-X(1)3.5, using sub-Doppler laser excitation techniques with fluorescence detection. Spectra were recorded under field-free conditions and in the presence of static electric or magnetic fields. The ground state electric dipole moment [μ = 4.30(2) D] and magnetic ge-factor [2.160(9)] were determined from these data. These values were both consistent with the 5f27s configurational assignment. Dispersed fluorescence measurements were used to determine vibrational constants for the ground and first electronically excited states. Electric dipole moments and magnetic ge-factors are also reported for the higher-energy electronically excited states.</description><subject>Angular momentum</subject><subject>Chemistry</subject><subject>Configurations</subject><subject>Dipole moments</subject><subject>Electric dipoles</subject><subject>Electron transitions</subject><subject>Excitation</subject><subject>Field theory</subject><subject>Fluorescence</subject><subject>Ground state</subject><subject>Ligands</subject><subject>Physics</subject><subject>Spectrum analysis</subject><subject>Uranium</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MlKxTAUBuAgil6HhS8gRTcqVk-GJs1SxQkuutF1aNNUI21Tk1bw7c0dVFBwlUA-_pzzI7SL4RQDp2fZKeBM5DlbQRMMuUwFl7CKJgAEp5ID30CbIbwCABaEraMNKigTmPAJuri1zy-JN8E142Bdl5jG6MG7zuok9PNr0K7_SFydjL7o7Ngmrevi--BtZU6Sp_tttFYXTTA7y3MLPV1fPV7eptOHm7vL82mqqYAhNZUUWNJac10ZWsoyY5KTAqAimS6ZzDMmWIELDDXnklYVZpmQ1ABhrKw5pVtof5HrwmBV0HYw-kW7rotTKsJwLilEdLhAvXdvowmDam3QpmmKzrgxKJKTXAgqGIv04Bd9daPv4gpzxeK4VEZ1tFA6NhG8qVXvbVv4D4VBzdpXmVq2H-3eMnEsW1N9y6-6IzhegNn0xazvb_Pu_E-S6qv6P_z3608T9pjN</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Le, Anh T.</creator><creator>Bai, Xi-lin</creator><creator>Heaven, Michael C.</creator><creator>Steimle, Timothy C.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4738-2408</orcidid><orcidid>https://orcid.org/0000-0002-5859-9461</orcidid><orcidid>https://orcid.org/0000000347382408</orcidid><orcidid>https://orcid.org/0000000258599461</orcidid></search><sort><creationdate>20230628</creationdate><title>High resolution electronic spectroscopy of uranium mononitride, UN</title><author>Le, Anh T. ; Bai, Xi-lin ; Heaven, Michael C. ; Steimle, Timothy C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-ed97193fc6cde3b9b54962a00d25cb4985474a1a10f6693dd145793e0244bf633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angular momentum</topic><topic>Chemistry</topic><topic>Configurations</topic><topic>Dipole moments</topic><topic>Electric dipoles</topic><topic>Electron transitions</topic><topic>Excitation</topic><topic>Field theory</topic><topic>Fluorescence</topic><topic>Ground state</topic><topic>Ligands</topic><topic>Physics</topic><topic>Spectrum analysis</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Anh T.</creatorcontrib><creatorcontrib>Bai, Xi-lin</creatorcontrib><creatorcontrib>Heaven, Michael C.</creatorcontrib><creatorcontrib>Steimle, Timothy C.</creatorcontrib><creatorcontrib>Emory Univ., Atlanta, GA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Anh T.</au><au>Bai, Xi-lin</au><au>Heaven, Michael C.</au><au>Steimle, Timothy C.</au><aucorp>Emory Univ., Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High resolution electronic spectroscopy of uranium mononitride, UN</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-06-28</date><risdate>2023</risdate><volume>158</volume><issue>24</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The isoelectronic molecules UN and UO+ are known to have Ω = 3.5 and Ω = 4.5 ground states, respectively (where Ω is the unsigned projection of the electronic angular momentum along the internuclear axis). A ligand field theory model has been proposed to account for the difference [Matthew and Morse, J. Chem. Phys. 138, 184303 (2013)]. The ground state of UO+ arises from the U3+(5f3(4I4.5))O2− configuration. Owing to the higher nominal charge of the N3− ligand, the U3+ ion in UN is stabilized by promoting one of the 5f electrons to the more polarizable 7s orbital, reducing the repulsive interaction with the ligand and rendering U3+(5f27s(4H3.5))N3− the lowest energy configuration. In the present work, we have advanced the characterization of the UN ground state through studies of two electronic transitions, [18.35]4.5-X(1)3.5 and [18.63]4.5-X(1)3.5, using sub-Doppler laser excitation techniques with fluorescence detection. Spectra were recorded under field-free conditions and in the presence of static electric or magnetic fields. The ground state electric dipole moment [μ = 4.30(2) D] and magnetic ge-factor [2.160(9)] were determined from these data. These values were both consistent with the 5f27s configurational assignment. Dispersed fluorescence measurements were used to determine vibrational constants for the ground and first electronically excited states. Electric dipole moments and magnetic ge-factors are also reported for the higher-energy electronically excited states.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37347126</pmid><doi>10.1063/5.0157884</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4738-2408</orcidid><orcidid>https://orcid.org/0000-0002-5859-9461</orcidid><orcidid>https://orcid.org/0000000347382408</orcidid><orcidid>https://orcid.org/0000000258599461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-06, Vol.158 (24)
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_2418930
source AIP Journals Complete; Alma/SFX Local Collection
subjects Angular momentum
Chemistry
Configurations
Dipole moments
Electric dipoles
Electron transitions
Excitation
Field theory
Fluorescence
Ground state
Ligands
Physics
Spectrum analysis
Uranium
title High resolution electronic spectroscopy of uranium mononitride, UN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20resolution%20electronic%20spectroscopy%20of%20uranium%20mononitride,%20UN&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Le,%20Anh%20T.&rft.aucorp=Emory%20Univ.,%20Atlanta,%20GA%20(United%20States)&rft.date=2023-06-28&rft.volume=158&rft.issue=24&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0157884&rft_dat=%3Cproquest_osti_%3E2828497139%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828497139&rft_id=info:pmid/37347126&rfr_iscdi=true