Radio-Frequency Rapid Thermal Processing Enabling Spatial Phase Transformation and Nanocrystallization of Soft Magnetic Amorphous Alloys
Thermal processing of soft magnetic amorphous and nanocrystalline alloys is explored under the influence of radio‐frequency induction‐heating techniques. Direct induction‐heating concepts based on longitudinal and transverse flux heating are examined and the details of electromagnetic fields interac...
Gespeichert in:
Veröffentlicht in: | Advanced engineering materials 2022-05, Vol.24 (10) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Advanced engineering materials |
container_volume | 24 |
creator | Talaat, Ahmed Greve, David W. Tan, Shibo Paplham, Tyler Byerly, Kevin McHenry, Michael E. Ohodnicki Jr., Paul R. |
description | Thermal processing of soft magnetic amorphous and nanocrystalline alloys is explored under the influence of radio‐frequency induction‐heating techniques. Direct induction‐heating concepts based on longitudinal and transverse flux heating are examined and the details of electromagnetic fields interaction with metallic strips are discussed by analytical calculations as well as finite element analysis. Initial experimental results confirming spatial control of phase transformations and nanocrystallization within a single strip of Finemet Fe‐based amorphous ribbons are reported. The degree to which primary and secondary crystallization temperature are achieved depends on the spacing between the ribbon relative to the induction coil as well as the coil design and configuration. For transverse coil configurations, the local temperature and therefore microstructural evolution is different across the lateral dimension of processed ribbons, with reduced gap sizes producing enhanced peak temperatures and larger temperature distributions with greater spatial variation in microstructure. In addition, indirect susceptor‐based induction heating under tension is performed and the impact of microstructure is demonstrated. Herein, potential for exploiting spatially optimized phase transformations is illustrated through electromagnetic field–assisted processing in a scalable manufacturing process with amorphous and nanocrystalline soft magnetic alloys. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2418051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418051</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24180513</originalsourceid><addsrcrecordid>eNqNik1uwkAMRmfRSqU_d7C6j5RpALFFCMSmqILskTtxiNFgh_GwSE_AsVvUHqCr9-l9786N_LiaFX46mT64R7NjWXpf-mrkrltsWItVovOFJAywxZ4bqDtKJ4zwkTSQGcsBloKf8TZ2PWa-fR0aQZ1QrNWfOrMKoDSwQdGQBssYI3_9em1hp22GdzwIZQ4wP2nqO70YzGPUwZ7dfYvR6OWPT-51tawX60It894CZwpdUBEKef829rNy4qt_Rd8Oj1O_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radio-Frequency Rapid Thermal Processing Enabling Spatial Phase Transformation and Nanocrystallization of Soft Magnetic Amorphous Alloys</title><source>Wiley Online Library All Journals</source><creator>Talaat, Ahmed ; Greve, David W. ; Tan, Shibo ; Paplham, Tyler ; Byerly, Kevin ; McHenry, Michael E. ; Ohodnicki Jr., Paul R.</creator><creatorcontrib>Talaat, Ahmed ; Greve, David W. ; Tan, Shibo ; Paplham, Tyler ; Byerly, Kevin ; McHenry, Michael E. ; Ohodnicki Jr., Paul R. ; Carnegie Mellon Univ., Pittsburgh, PA (United States) ; Leidos, Inc., Reston, VA (United States)</creatorcontrib><description>Thermal processing of soft magnetic amorphous and nanocrystalline alloys is explored under the influence of radio‐frequency induction‐heating techniques. Direct induction‐heating concepts based on longitudinal and transverse flux heating are examined and the details of electromagnetic fields interaction with metallic strips are discussed by analytical calculations as well as finite element analysis. Initial experimental results confirming spatial control of phase transformations and nanocrystallization within a single strip of Finemet Fe‐based amorphous ribbons are reported. The degree to which primary and secondary crystallization temperature are achieved depends on the spacing between the ribbon relative to the induction coil as well as the coil design and configuration. For transverse coil configurations, the local temperature and therefore microstructural evolution is different across the lateral dimension of processed ribbons, with reduced gap sizes producing enhanced peak temperatures and larger temperature distributions with greater spatial variation in microstructure. In addition, indirect susceptor‐based induction heating under tension is performed and the impact of microstructure is demonstrated. Herein, potential for exploiting spatially optimized phase transformations is illustrated through electromagnetic field–assisted processing in a scalable manufacturing process with amorphous and nanocrystalline soft magnetic alloys.</description><identifier>ISSN: 1438-1656</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>Amorphous Ribbons ; Induction Heating ; MATERIALS SCIENCE ; Nanocrystallization ; Radio Frequency ; Rapid Annealing</subject><ispartof>Advanced engineering materials, 2022-05, Vol.24 (10)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000158019191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2418051$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Talaat, Ahmed</creatorcontrib><creatorcontrib>Greve, David W.</creatorcontrib><creatorcontrib>Tan, Shibo</creatorcontrib><creatorcontrib>Paplham, Tyler</creatorcontrib><creatorcontrib>Byerly, Kevin</creatorcontrib><creatorcontrib>McHenry, Michael E.</creatorcontrib><creatorcontrib>Ohodnicki Jr., Paul R.</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><creatorcontrib>Leidos, Inc., Reston, VA (United States)</creatorcontrib><title>Radio-Frequency Rapid Thermal Processing Enabling Spatial Phase Transformation and Nanocrystallization of Soft Magnetic Amorphous Alloys</title><title>Advanced engineering materials</title><description>Thermal processing of soft magnetic amorphous and nanocrystalline alloys is explored under the influence of radio‐frequency induction‐heating techniques. Direct induction‐heating concepts based on longitudinal and transverse flux heating are examined and the details of electromagnetic fields interaction with metallic strips are discussed by analytical calculations as well as finite element analysis. Initial experimental results confirming spatial control of phase transformations and nanocrystallization within a single strip of Finemet Fe‐based amorphous ribbons are reported. The degree to which primary and secondary crystallization temperature are achieved depends on the spacing between the ribbon relative to the induction coil as well as the coil design and configuration. For transverse coil configurations, the local temperature and therefore microstructural evolution is different across the lateral dimension of processed ribbons, with reduced gap sizes producing enhanced peak temperatures and larger temperature distributions with greater spatial variation in microstructure. In addition, indirect susceptor‐based induction heating under tension is performed and the impact of microstructure is demonstrated. Herein, potential for exploiting spatially optimized phase transformations is illustrated through electromagnetic field–assisted processing in a scalable manufacturing process with amorphous and nanocrystalline soft magnetic alloys.</description><subject>Amorphous Ribbons</subject><subject>Induction Heating</subject><subject>MATERIALS SCIENCE</subject><subject>Nanocrystallization</subject><subject>Radio Frequency</subject><subject>Rapid Annealing</subject><issn>1438-1656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNik1uwkAMRmfRSqU_d7C6j5RpALFFCMSmqILskTtxiNFgh_GwSE_AsVvUHqCr9-l9786N_LiaFX46mT64R7NjWXpf-mrkrltsWItVovOFJAywxZ4bqDtKJ4zwkTSQGcsBloKf8TZ2PWa-fR0aQZ1QrNWfOrMKoDSwQdGQBssYI3_9em1hp22GdzwIZQ4wP2nqO70YzGPUwZ7dfYvR6OWPT-51tawX60It894CZwpdUBEKef829rNy4qt_Rd8Oj1O_</recordid><startdate>20220512</startdate><enddate>20220512</enddate><creator>Talaat, Ahmed</creator><creator>Greve, David W.</creator><creator>Tan, Shibo</creator><creator>Paplham, Tyler</creator><creator>Byerly, Kevin</creator><creator>McHenry, Michael E.</creator><creator>Ohodnicki Jr., Paul R.</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000158019191</orcidid></search><sort><creationdate>20220512</creationdate><title>Radio-Frequency Rapid Thermal Processing Enabling Spatial Phase Transformation and Nanocrystallization of Soft Magnetic Amorphous Alloys</title><author>Talaat, Ahmed ; Greve, David W. ; Tan, Shibo ; Paplham, Tyler ; Byerly, Kevin ; McHenry, Michael E. ; Ohodnicki Jr., Paul R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24180513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amorphous Ribbons</topic><topic>Induction Heating</topic><topic>MATERIALS SCIENCE</topic><topic>Nanocrystallization</topic><topic>Radio Frequency</topic><topic>Rapid Annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talaat, Ahmed</creatorcontrib><creatorcontrib>Greve, David W.</creatorcontrib><creatorcontrib>Tan, Shibo</creatorcontrib><creatorcontrib>Paplham, Tyler</creatorcontrib><creatorcontrib>Byerly, Kevin</creatorcontrib><creatorcontrib>McHenry, Michael E.</creatorcontrib><creatorcontrib>Ohodnicki Jr., Paul R.</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><creatorcontrib>Leidos, Inc., Reston, VA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talaat, Ahmed</au><au>Greve, David W.</au><au>Tan, Shibo</au><au>Paplham, Tyler</au><au>Byerly, Kevin</au><au>McHenry, Michael E.</au><au>Ohodnicki Jr., Paul R.</au><aucorp>Carnegie Mellon Univ., Pittsburgh, PA (United States)</aucorp><aucorp>Leidos, Inc., Reston, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radio-Frequency Rapid Thermal Processing Enabling Spatial Phase Transformation and Nanocrystallization of Soft Magnetic Amorphous Alloys</atitle><jtitle>Advanced engineering materials</jtitle><date>2022-05-12</date><risdate>2022</risdate><volume>24</volume><issue>10</issue><issn>1438-1656</issn><abstract>Thermal processing of soft magnetic amorphous and nanocrystalline alloys is explored under the influence of radio‐frequency induction‐heating techniques. Direct induction‐heating concepts based on longitudinal and transverse flux heating are examined and the details of electromagnetic fields interaction with metallic strips are discussed by analytical calculations as well as finite element analysis. Initial experimental results confirming spatial control of phase transformations and nanocrystallization within a single strip of Finemet Fe‐based amorphous ribbons are reported. The degree to which primary and secondary crystallization temperature are achieved depends on the spacing between the ribbon relative to the induction coil as well as the coil design and configuration. For transverse coil configurations, the local temperature and therefore microstructural evolution is different across the lateral dimension of processed ribbons, with reduced gap sizes producing enhanced peak temperatures and larger temperature distributions with greater spatial variation in microstructure. In addition, indirect susceptor‐based induction heating under tension is performed and the impact of microstructure is demonstrated. Herein, potential for exploiting spatially optimized phase transformations is illustrated through electromagnetic field–assisted processing in a scalable manufacturing process with amorphous and nanocrystalline soft magnetic alloys.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000158019191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-1656 |
ispartof | Advanced engineering materials, 2022-05, Vol.24 (10) |
issn | 1438-1656 |
language | eng |
recordid | cdi_osti_scitechconnect_2418051 |
source | Wiley Online Library All Journals |
subjects | Amorphous Ribbons Induction Heating MATERIALS SCIENCE Nanocrystallization Radio Frequency Rapid Annealing |
title | Radio-Frequency Rapid Thermal Processing Enabling Spatial Phase Transformation and Nanocrystallization of Soft Magnetic Amorphous Alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radio-Frequency%20Rapid%20Thermal%20Processing%20Enabling%20Spatial%20Phase%20Transformation%20and%20Nanocrystallization%20of%20Soft%20Magnetic%20Amorphous%20Alloys&rft.jtitle=Advanced%20engineering%20materials&rft.au=Talaat,%20Ahmed&rft.aucorp=Carnegie%20Mellon%20Univ.,%20Pittsburgh,%20PA%20(United%20States)&rft.date=2022-05-12&rft.volume=24&rft.issue=10&rft.issn=1438-1656&rft_id=info:doi/&rft_dat=%3Costi%3E2418051%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |