Solid-state polymer magnesium supercapacitor

Here, the present article focuses on the development of a highly ion-conductive, solvent-free, solid-state polymer electrolyte membrane (PEM) via photopolymerization of polyethylene glycol diacrylate (PEGDA) network from its homogeneous melt mixtures containing succinonitrile (SCN) plasticizer and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state ionics 2023-03, Vol.394 (C)
Hauptverfasser: Trivedi, Meeta, Kyu, Thein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page
container_title Solid state ionics
container_volume 394
creator Trivedi, Meeta
Kyu, Thein
description Here, the present article focuses on the development of a highly ion-conductive, solvent-free, solid-state polymer electrolyte membrane (PEM) via photopolymerization of polyethylene glycol diacrylate (PEGDA) network from its homogeneous melt mixtures containing succinonitrile (SCN) plasticizer and magnesium bis(trifluoromethane sulfonyl) imide Mg(TFSI)2 salt. The above solid-state Mg-PEM exhibits a Helmholtz electric double-layer capacitor (EDLC) behavior in its supercapacitive symmetric carbonaceous electrode configuration. The electrochemical stability for this PEM membrane (20/40/40 PEGDA/SCN/Mg (TFSI)2) was found to be approximately 3 V from linear sweep voltammetry with a specific capacitance of about 44 F/g from cyclic voltammetry and an energy density of approximately 17 Wh/kg in the 0–2 V range from the constant current density (CCD) experiment. Of particular interest is its excellent capacity retention of over 11,200 cycles, thus tested with the Coulombic efficiency of over 87%. Moreover, the energy density after extensive cycling for 11,200 has increased to approximately 56 Wh/kg at 10 mV/s in the potential range of 0–3 V relative to 17 Wh/kg in the potential range of 0–2 V at the same scan rate, attesting the excellent electrochemical stability and long life of the present Mg-PEM supercapacitor.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2417805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417805</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24178053</originalsourceid><addsrcrecordid>eNpjYeA0MDQz1zUyN7bgYOAqLs4yMDAwM7Yw42TQCc7PyUzRLS5JLElVKMjPqcxNLVLITUzPSy3OLM1VKC4tSC1KTixITM4syS_iYWBNS8wpTuWF0twMSm6uIc4euvnFJZnxxUA1qckZyfl5eanJJfFGJobmFgamxkQpAgAhyDHI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solid-state polymer magnesium supercapacitor</title><source>Elsevier ScienceDirect Journals</source><creator>Trivedi, Meeta ; Kyu, Thein</creator><creatorcontrib>Trivedi, Meeta ; Kyu, Thein ; Chemtronergy, LLC, Salt Lake City, UT (United States)</creatorcontrib><description>Here, the present article focuses on the development of a highly ion-conductive, solvent-free, solid-state polymer electrolyte membrane (PEM) via photopolymerization of polyethylene glycol diacrylate (PEGDA) network from its homogeneous melt mixtures containing succinonitrile (SCN) plasticizer and magnesium bis(trifluoromethane sulfonyl) imide Mg(TFSI)2 salt. The above solid-state Mg-PEM exhibits a Helmholtz electric double-layer capacitor (EDLC) behavior in its supercapacitive symmetric carbonaceous electrode configuration. The electrochemical stability for this PEM membrane (20/40/40 PEGDA/SCN/Mg (TFSI)2) was found to be approximately 3 V from linear sweep voltammetry with a specific capacitance of about 44 F/g from cyclic voltammetry and an energy density of approximately 17 Wh/kg in the 0–2 V range from the constant current density (CCD) experiment. Of particular interest is its excellent capacity retention of over 11,200 cycles, thus tested with the Coulombic efficiency of over 87%. Moreover, the energy density after extensive cycling for 11,200 has increased to approximately 56 Wh/kg at 10 mV/s in the potential range of 0–3 V relative to 17 Wh/kg in the potential range of 0–2 V at the same scan rate, attesting the excellent electrochemical stability and long life of the present Mg-PEM supercapacitor.</description><identifier>ISSN: 0167-2738</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Chemistry ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electric double-layer capacitor ; Magnesium supercapacitor ; Physics ; Poly(ethylene glycol) diacrylate ; Polymer electrolyte membrane</subject><ispartof>Solid state ionics, 2023-03, Vol.394 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2417805$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Trivedi, Meeta</creatorcontrib><creatorcontrib>Kyu, Thein</creatorcontrib><creatorcontrib>Chemtronergy, LLC, Salt Lake City, UT (United States)</creatorcontrib><title>Solid-state polymer magnesium supercapacitor</title><title>Solid state ionics</title><description>Here, the present article focuses on the development of a highly ion-conductive, solvent-free, solid-state polymer electrolyte membrane (PEM) via photopolymerization of polyethylene glycol diacrylate (PEGDA) network from its homogeneous melt mixtures containing succinonitrile (SCN) plasticizer and magnesium bis(trifluoromethane sulfonyl) imide Mg(TFSI)2 salt. The above solid-state Mg-PEM exhibits a Helmholtz electric double-layer capacitor (EDLC) behavior in its supercapacitive symmetric carbonaceous electrode configuration. The electrochemical stability for this PEM membrane (20/40/40 PEGDA/SCN/Mg (TFSI)2) was found to be approximately 3 V from linear sweep voltammetry with a specific capacitance of about 44 F/g from cyclic voltammetry and an energy density of approximately 17 Wh/kg in the 0–2 V range from the constant current density (CCD) experiment. Of particular interest is its excellent capacity retention of over 11,200 cycles, thus tested with the Coulombic efficiency of over 87%. Moreover, the energy density after extensive cycling for 11,200 has increased to approximately 56 Wh/kg at 10 mV/s in the potential range of 0–3 V relative to 17 Wh/kg in the potential range of 0–2 V at the same scan rate, attesting the excellent electrochemical stability and long life of the present Mg-PEM supercapacitor.</description><subject>Chemistry</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electric double-layer capacitor</subject><subject>Magnesium supercapacitor</subject><subject>Physics</subject><subject>Poly(ethylene glycol) diacrylate</subject><subject>Polymer electrolyte membrane</subject><issn>0167-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0MDQz1zUyN7bgYOAqLs4yMDAwM7Yw42TQCc7PyUzRLS5JLElVKMjPqcxNLVLITUzPSy3OLM1VKC4tSC1KTixITM4syS_iYWBNS8wpTuWF0twMSm6uIc4euvnFJZnxxUA1qckZyfl5eanJJfFGJobmFgamxkQpAgAhyDHI</recordid><startdate>20230308</startdate><enddate>20230308</enddate><creator>Trivedi, Meeta</creator><creator>Kyu, Thein</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20230308</creationdate><title>Solid-state polymer magnesium supercapacitor</title><author>Trivedi, Meeta ; Kyu, Thein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24178053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electric double-layer capacitor</topic><topic>Magnesium supercapacitor</topic><topic>Physics</topic><topic>Poly(ethylene glycol) diacrylate</topic><topic>Polymer electrolyte membrane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trivedi, Meeta</creatorcontrib><creatorcontrib>Kyu, Thein</creatorcontrib><creatorcontrib>Chemtronergy, LLC, Salt Lake City, UT (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trivedi, Meeta</au><au>Kyu, Thein</au><aucorp>Chemtronergy, LLC, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-state polymer magnesium supercapacitor</atitle><jtitle>Solid state ionics</jtitle><date>2023-03-08</date><risdate>2023</risdate><volume>394</volume><issue>C</issue><issn>0167-2738</issn><abstract>Here, the present article focuses on the development of a highly ion-conductive, solvent-free, solid-state polymer electrolyte membrane (PEM) via photopolymerization of polyethylene glycol diacrylate (PEGDA) network from its homogeneous melt mixtures containing succinonitrile (SCN) plasticizer and magnesium bis(trifluoromethane sulfonyl) imide Mg(TFSI)2 salt. The above solid-state Mg-PEM exhibits a Helmholtz electric double-layer capacitor (EDLC) behavior in its supercapacitive symmetric carbonaceous electrode configuration. The electrochemical stability for this PEM membrane (20/40/40 PEGDA/SCN/Mg (TFSI)2) was found to be approximately 3 V from linear sweep voltammetry with a specific capacitance of about 44 F/g from cyclic voltammetry and an energy density of approximately 17 Wh/kg in the 0–2 V range from the constant current density (CCD) experiment. Of particular interest is its excellent capacity retention of over 11,200 cycles, thus tested with the Coulombic efficiency of over 87%. Moreover, the energy density after extensive cycling for 11,200 has increased to approximately 56 Wh/kg at 10 mV/s in the potential range of 0–3 V relative to 17 Wh/kg in the potential range of 0–2 V at the same scan rate, attesting the excellent electrochemical stability and long life of the present Mg-PEM supercapacitor.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2023-03, Vol.394 (C)
issn 0167-2738
language eng
recordid cdi_osti_scitechconnect_2417805
source Elsevier ScienceDirect Journals
subjects Chemistry
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Electric double-layer capacitor
Magnesium supercapacitor
Physics
Poly(ethylene glycol) diacrylate
Polymer electrolyte membrane
title Solid-state polymer magnesium supercapacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-state%20polymer%20magnesium%20supercapacitor&rft.jtitle=Solid%20state%20ionics&rft.au=Trivedi,%20Meeta&rft.aucorp=Chemtronergy,%20LLC,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2023-03-08&rft.volume=394&rft.issue=C&rft.issn=0167-2738&rft_id=info:doi/&rft_dat=%3Costi%3E2417805%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true