Neutron resonance transmission analysis prototype system for thorium fuel cycle safeguards
Emerging thorium-based reactor designs and fuel cycles present challenges to traditional non-destructive assay techniques used in international safeguards. Specifically, assaying the masses of 233U and 235U when they are present together in samples with high gamma ray backgrounds is difficult becaus...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2024-05, Vol.1062, p.169148, Article 169148 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 169148 |
container_title | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
container_volume | 1062 |
creator | McDonald, Benjamin S. Danagoulian, Areg Gilbert, Andrew J. Klein, Ethan A. Kulisek, Jonathan A. Moore, Michael E. Rahon, Jill M. Zalavadia, Mital A. |
description | Emerging thorium-based reactor designs and fuel cycles present challenges to traditional non-destructive assay techniques used in international safeguards. Specifically, assaying the masses of 233U and 235U when they are present together in samples with high gamma ray backgrounds is difficult because of similar passive neutron signatures and relatively weak gamma-ray emissions of 233U. The Pacific Northwest National Laboratory (PNNL) and the Massachusetts Institute of Technology (MIT) are developing a portable neutron resonance transmission analysis (pNRTA) system as one potential solution to these challenges. This method provides isotopic concentration data for a sample via neutron time-of-flight (TOF) measurements that exploit epithermal neutron resonance cross-sections. A recently developed pNRTA system uses a commercially available, pulsed deuterium-tritium neutron generator with a ∼2 m flight path and a GS20 lithium glass scintillator detector. This paper describes the prototype pNRTA system design, a refined radiation transport model of the system, preliminary measurements with thorium and uranium sources, and demonstration of a quantitative isotopic estimation algorithm. |
doi_str_mv | 10.1016/j.nima.2024.169148 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2409372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900224000743</els_id><sourcerecordid>S0168900224000743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-cff74c5e67245460b8e6b6de38becd8ac76dbc2528b1ec496c0fac4448e25a4e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU_Fe2uaTZMUvIj4Dxa96MVLSKdTN0u3WZJU6Lc3pZ6dywwz7z2GHyHXJS1KWorbfTHYgykYZbwoRV1ydUJWpZIsryspTskqiVReU8rOyUUIe5qqlmpFvt5wjN4NmcfgBjMAZtGbIRxsCDatzWD6KdiQHb2LLk5HzMIUIh6yzvks7py3Y5pH7DOYoE9X0-H3aHwbLslZZ_qAV399TT6fHj8eXvLt-_Prw_02ByZVzKHrJIcKhWS84oI2CkUjWtyoBqFVBqRoG2AVU02JwGsBtDPAOVfIKsNxsyY3S64L0eoANiLswA0DQtSM03ojWRKxRQTeheCx00efiPlJl1TPCPVezwj1jFAvCJPpbjFhev_Hop_TMTFqrZ_DW2f_s_8Cvz99QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neutron resonance transmission analysis prototype system for thorium fuel cycle safeguards</title><source>Elsevier ScienceDirect Journals Complete</source><creator>McDonald, Benjamin S. ; Danagoulian, Areg ; Gilbert, Andrew J. ; Klein, Ethan A. ; Kulisek, Jonathan A. ; Moore, Michael E. ; Rahon, Jill M. ; Zalavadia, Mital A.</creator><creatorcontrib>McDonald, Benjamin S. ; Danagoulian, Areg ; Gilbert, Andrew J. ; Klein, Ethan A. ; Kulisek, Jonathan A. ; Moore, Michael E. ; Rahon, Jill M. ; Zalavadia, Mital A. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Emerging thorium-based reactor designs and fuel cycles present challenges to traditional non-destructive assay techniques used in international safeguards. Specifically, assaying the masses of 233U and 235U when they are present together in samples with high gamma ray backgrounds is difficult because of similar passive neutron signatures and relatively weak gamma-ray emissions of 233U. The Pacific Northwest National Laboratory (PNNL) and the Massachusetts Institute of Technology (MIT) are developing a portable neutron resonance transmission analysis (pNRTA) system as one potential solution to these challenges. This method provides isotopic concentration data for a sample via neutron time-of-flight (TOF) measurements that exploit epithermal neutron resonance cross-sections. A recently developed pNRTA system uses a commercially available, pulsed deuterium-tritium neutron generator with a ∼2 m flight path and a GS20 lithium glass scintillator detector. This paper describes the prototype pNRTA system design, a refined radiation transport model of the system, preliminary measurements with thorium and uranium sources, and demonstration of a quantitative isotopic estimation algorithm.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2024.169148</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Neutron resonance transmission analysis ; Non-destructive assay ; NUCLEAR FUEL CYCLE AND FUEL MATERIALS ; Pulse shape discrimination ; Thorium fuel cycle safeguards</subject><ispartof>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2024-05, Vol.1062, p.169148, Article 169148</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-cff74c5e67245460b8e6b6de38becd8ac76dbc2528b1ec496c0fac4448e25a4e3</cites><orcidid>0000-0001-5178-1108 ; 0000-0003-0597-0367 ; 0000-0003-0817-7858 ; 0000-0003-2640-1112 ; 0000-0002-4596-9670 ; 0000000305970367 ; 0000000151781108 ; 0000000326401112 ; 0000000245969670 ; 0000000308177858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nima.2024.169148$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2409372$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McDonald, Benjamin S.</creatorcontrib><creatorcontrib>Danagoulian, Areg</creatorcontrib><creatorcontrib>Gilbert, Andrew J.</creatorcontrib><creatorcontrib>Klein, Ethan A.</creatorcontrib><creatorcontrib>Kulisek, Jonathan A.</creatorcontrib><creatorcontrib>Moore, Michael E.</creatorcontrib><creatorcontrib>Rahon, Jill M.</creatorcontrib><creatorcontrib>Zalavadia, Mital A.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Neutron resonance transmission analysis prototype system for thorium fuel cycle safeguards</title><title>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>Emerging thorium-based reactor designs and fuel cycles present challenges to traditional non-destructive assay techniques used in international safeguards. Specifically, assaying the masses of 233U and 235U when they are present together in samples with high gamma ray backgrounds is difficult because of similar passive neutron signatures and relatively weak gamma-ray emissions of 233U. The Pacific Northwest National Laboratory (PNNL) and the Massachusetts Institute of Technology (MIT) are developing a portable neutron resonance transmission analysis (pNRTA) system as one potential solution to these challenges. This method provides isotopic concentration data for a sample via neutron time-of-flight (TOF) measurements that exploit epithermal neutron resonance cross-sections. A recently developed pNRTA system uses a commercially available, pulsed deuterium-tritium neutron generator with a ∼2 m flight path and a GS20 lithium glass scintillator detector. This paper describes the prototype pNRTA system design, a refined radiation transport model of the system, preliminary measurements with thorium and uranium sources, and demonstration of a quantitative isotopic estimation algorithm.</description><subject>Neutron resonance transmission analysis</subject><subject>Non-destructive assay</subject><subject>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</subject><subject>Pulse shape discrimination</subject><subject>Thorium fuel cycle safeguards</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU_Fe2uaTZMUvIj4Dxa96MVLSKdTN0u3WZJU6Lc3pZ6dywwz7z2GHyHXJS1KWorbfTHYgykYZbwoRV1ydUJWpZIsryspTskqiVReU8rOyUUIe5qqlmpFvt5wjN4NmcfgBjMAZtGbIRxsCDatzWD6KdiQHb2LLk5HzMIUIh6yzvks7py3Y5pH7DOYoE9X0-H3aHwbLslZZ_qAV399TT6fHj8eXvLt-_Prw_02ByZVzKHrJIcKhWS84oI2CkUjWtyoBqFVBqRoG2AVU02JwGsBtDPAOVfIKsNxsyY3S64L0eoANiLswA0DQtSM03ojWRKxRQTeheCx00efiPlJl1TPCPVezwj1jFAvCJPpbjFhev_Hop_TMTFqrZ_DW2f_s_8Cvz99QQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>McDonald, Benjamin S.</creator><creator>Danagoulian, Areg</creator><creator>Gilbert, Andrew J.</creator><creator>Klein, Ethan A.</creator><creator>Kulisek, Jonathan A.</creator><creator>Moore, Michael E.</creator><creator>Rahon, Jill M.</creator><creator>Zalavadia, Mital A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5178-1108</orcidid><orcidid>https://orcid.org/0000-0003-0597-0367</orcidid><orcidid>https://orcid.org/0000-0003-0817-7858</orcidid><orcidid>https://orcid.org/0000-0003-2640-1112</orcidid><orcidid>https://orcid.org/0000-0002-4596-9670</orcidid><orcidid>https://orcid.org/0000000305970367</orcidid><orcidid>https://orcid.org/0000000151781108</orcidid><orcidid>https://orcid.org/0000000326401112</orcidid><orcidid>https://orcid.org/0000000245969670</orcidid><orcidid>https://orcid.org/0000000308177858</orcidid></search><sort><creationdate>20240501</creationdate><title>Neutron resonance transmission analysis prototype system for thorium fuel cycle safeguards</title><author>McDonald, Benjamin S. ; Danagoulian, Areg ; Gilbert, Andrew J. ; Klein, Ethan A. ; Kulisek, Jonathan A. ; Moore, Michael E. ; Rahon, Jill M. ; Zalavadia, Mital A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-cff74c5e67245460b8e6b6de38becd8ac76dbc2528b1ec496c0fac4448e25a4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Neutron resonance transmission analysis</topic><topic>Non-destructive assay</topic><topic>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</topic><topic>Pulse shape discrimination</topic><topic>Thorium fuel cycle safeguards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonald, Benjamin S.</creatorcontrib><creatorcontrib>Danagoulian, Areg</creatorcontrib><creatorcontrib>Gilbert, Andrew J.</creatorcontrib><creatorcontrib>Klein, Ethan A.</creatorcontrib><creatorcontrib>Kulisek, Jonathan A.</creatorcontrib><creatorcontrib>Moore, Michael E.</creatorcontrib><creatorcontrib>Rahon, Jill M.</creatorcontrib><creatorcontrib>Zalavadia, Mital A.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonald, Benjamin S.</au><au>Danagoulian, Areg</au><au>Gilbert, Andrew J.</au><au>Klein, Ethan A.</au><au>Kulisek, Jonathan A.</au><au>Moore, Michael E.</au><au>Rahon, Jill M.</au><au>Zalavadia, Mital A.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutron resonance transmission analysis prototype system for thorium fuel cycle safeguards</atitle><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>1062</volume><spage>169148</spage><pages>169148-</pages><artnum>169148</artnum><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>Emerging thorium-based reactor designs and fuel cycles present challenges to traditional non-destructive assay techniques used in international safeguards. Specifically, assaying the masses of 233U and 235U when they are present together in samples with high gamma ray backgrounds is difficult because of similar passive neutron signatures and relatively weak gamma-ray emissions of 233U. The Pacific Northwest National Laboratory (PNNL) and the Massachusetts Institute of Technology (MIT) are developing a portable neutron resonance transmission analysis (pNRTA) system as one potential solution to these challenges. This method provides isotopic concentration data for a sample via neutron time-of-flight (TOF) measurements that exploit epithermal neutron resonance cross-sections. A recently developed pNRTA system uses a commercially available, pulsed deuterium-tritium neutron generator with a ∼2 m flight path and a GS20 lithium glass scintillator detector. This paper describes the prototype pNRTA system design, a refined radiation transport model of the system, preliminary measurements with thorium and uranium sources, and demonstration of a quantitative isotopic estimation algorithm.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2024.169148</doi><orcidid>https://orcid.org/0000-0001-5178-1108</orcidid><orcidid>https://orcid.org/0000-0003-0597-0367</orcidid><orcidid>https://orcid.org/0000-0003-0817-7858</orcidid><orcidid>https://orcid.org/0000-0003-2640-1112</orcidid><orcidid>https://orcid.org/0000-0002-4596-9670</orcidid><orcidid>https://orcid.org/0000000305970367</orcidid><orcidid>https://orcid.org/0000000151781108</orcidid><orcidid>https://orcid.org/0000000326401112</orcidid><orcidid>https://orcid.org/0000000245969670</orcidid><orcidid>https://orcid.org/0000000308177858</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9002 |
ispartof | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2024-05, Vol.1062, p.169148, Article 169148 |
issn | 0168-9002 1872-9576 |
language | eng |
recordid | cdi_osti_scitechconnect_2409372 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Neutron resonance transmission analysis Non-destructive assay NUCLEAR FUEL CYCLE AND FUEL MATERIALS Pulse shape discrimination Thorium fuel cycle safeguards |
title | Neutron resonance transmission analysis prototype system for thorium fuel cycle safeguards |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutron%20resonance%20transmission%20analysis%20prototype%20system%20for%20thorium%20fuel%20cycle%20safeguards&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=McDonald,%20Benjamin%20S.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-05-01&rft.volume=1062&rft.spage=169148&rft.pages=169148-&rft.artnum=169148&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2024.169148&rft_dat=%3Celsevier_osti_%3ES0168900224000743%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168900224000743&rfr_iscdi=true |