Effect of glass forming additives on low-activity waste feed conversion to glass

A significant effort was invested in the past to develop and refine mathematical models that relate the composition of nuclear waste glasses with their properties, such as viscosity, electrical conductivity, or chemical durability. However, less attention has been paid to the formulation of the melt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2024-05, Vol.593, p.155003, Article 155003
Hauptverfasser: Vernerová, Miroslava, Šůsová, Karolína, Kohoutková, Martina, Kloužek, Jaroslav, Cincibusová, Petra, Ferkl, Pavel, Marcial, Jose, Hrma, Pavel, Kruger, Albert A., Pokorný, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 155003
container_title Journal of nuclear materials
container_volume 593
creator Vernerová, Miroslava
Šůsová, Karolína
Kohoutková, Martina
Kloužek, Jaroslav
Cincibusová, Petra
Ferkl, Pavel
Marcial, Jose
Hrma, Pavel
Kruger, Albert A.
Pokorný, Richard
description A significant effort was invested in the past to develop and refine mathematical models that relate the composition of nuclear waste glasses with their properties, such as viscosity, electrical conductivity, or chemical durability. However, less attention has been paid to the formulation of the melter feed itself, such as the chemical form and the particle size of the glass forming and modifying additives, which have a significant effect on the feed-to-glass conversion process during melting. To address this issue, we systematically changed the mineral composition of a simulated low-activity waste melter feed and inspected its melting behavior. When substituting minerals with corresponding oxides and hydroxides, we found that different alumina sources (kyanite, gibbsite, boehmite, or corundum) had the strongest effect on the feed melting process, whereas the sources of Ca, Mg, and Zr had little effect. The X-ray diffraction analysis showed that the alumina sources differ in their dissolution kinetics: early dissolving alumina sources, such as gibbsite (Al(OH)3) and boehmite (AlO(OH)), increase the transient glass-forming melt viscosity at early stages, when gases still evolve, causing extended foaming, whereas alumina sources that dissolve at high temperatures, such as kyanite (Al2SiO5) and corundum (Al2O3), keep the transient glass-forming melt viscosity low and lead to a faster foam collapse. Using a viscosity-composition relationship to estimate the viscosity of transient glass-forming melts in the primary foaming range, we found that the primary foam began to collapse at 360 to 800 Pa s, and fully collapsed between 65 and 260 Pa s. This result agrees with our previous studies, according to which, the glass-forming melt viscosity at the cold cap foam bottom ranged from 24 to 85 Pa s.
doi_str_mv 10.1016/j.jnucmat.2024.155003
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2407042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311524001065</els_id><sourcerecordid>S0022311524001065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-5ed44d6c3ac34fbf49d821af39309251afb3b7e7298356ab5313b6c3f23eed813</originalsourceid><addsrcrecordid>eNqFUMtKAzEUDaJgrX6CENxPvXl1ZlYipT6goAtdh0weNUM7kSS2-PdmmO5d3XvhPO45CN0SWBAgy_t-0Q8_eq_yggLlCyIEADtDM9LUrOINhXM0A6C0YoSIS3SVUg8AogUxQ-9r56zOODi83amUsAtx74ctVsb47A824TDgXThWSpfT5198VClb7Kw1WIfhYGPyBZLDJHCNLpzaJXtzmnP0-bT-WL1Um7fn19XjptK04bkS1nBulpopzbjrHG9NQ4lyrGXQUlG2jnW1rWnbMLFUnWCEdQXuKCvGDWFzdDfphpS9TNpnq7_KP0NJIymHGjgtIDGBdAwpRevkd_R7FX8lATl2J3t56k6O3cmpu8J7mHi2JDh4G0cDO2hrfBz1TfD_KPwBkhp60g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of glass forming additives on low-activity waste feed conversion to glass</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vernerová, Miroslava ; Šůsová, Karolína ; Kohoutková, Martina ; Kloužek, Jaroslav ; Cincibusová, Petra ; Ferkl, Pavel ; Marcial, Jose ; Hrma, Pavel ; Kruger, Albert A. ; Pokorný, Richard</creator><creatorcontrib>Vernerová, Miroslava ; Šůsová, Karolína ; Kohoutková, Martina ; Kloužek, Jaroslav ; Cincibusová, Petra ; Ferkl, Pavel ; Marcial, Jose ; Hrma, Pavel ; Kruger, Albert A. ; Pokorný, Richard ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>A significant effort was invested in the past to develop and refine mathematical models that relate the composition of nuclear waste glasses with their properties, such as viscosity, electrical conductivity, or chemical durability. However, less attention has been paid to the formulation of the melter feed itself, such as the chemical form and the particle size of the glass forming and modifying additives, which have a significant effect on the feed-to-glass conversion process during melting. To address this issue, we systematically changed the mineral composition of a simulated low-activity waste melter feed and inspected its melting behavior. When substituting minerals with corresponding oxides and hydroxides, we found that different alumina sources (kyanite, gibbsite, boehmite, or corundum) had the strongest effect on the feed melting process, whereas the sources of Ca, Mg, and Zr had little effect. The X-ray diffraction analysis showed that the alumina sources differ in their dissolution kinetics: early dissolving alumina sources, such as gibbsite (Al(OH)3) and boehmite (AlO(OH)), increase the transient glass-forming melt viscosity at early stages, when gases still evolve, causing extended foaming, whereas alumina sources that dissolve at high temperatures, such as kyanite (Al2SiO5) and corundum (Al2O3), keep the transient glass-forming melt viscosity low and lead to a faster foam collapse. Using a viscosity-composition relationship to estimate the viscosity of transient glass-forming melts in the primary foaming range, we found that the primary foam began to collapse at 360 to 800 Pa s, and fully collapsed between 65 and 260 Pa s. This result agrees with our previous studies, according to which, the glass-forming melt viscosity at the cold cap foam bottom ranged from 24 to 85 Pa s.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2024.155003</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Glass melting ; Glass-forming additives ; MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES ; MATERIALS SCIENCE ; Nuclear waste ; Vitrification</subject><ispartof>Journal of nuclear materials, 2024-05, Vol.593, p.155003, Article 155003</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-5ed44d6c3ac34fbf49d821af39309251afb3b7e7298356ab5313b6c3f23eed813</cites><orcidid>0000-0003-2844-3199 ; 0000-0003-2815-3685 ; 0000-0002-9023-0381 ; 0000-0001-8468-0813 ; 0000000161565310 ; 0000000290230381 ; 0000000328153685 ; 0000000328443199 ; 0000000184680813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2024.155003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2407042$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vernerová, Miroslava</creatorcontrib><creatorcontrib>Šůsová, Karolína</creatorcontrib><creatorcontrib>Kohoutková, Martina</creatorcontrib><creatorcontrib>Kloužek, Jaroslav</creatorcontrib><creatorcontrib>Cincibusová, Petra</creatorcontrib><creatorcontrib>Ferkl, Pavel</creatorcontrib><creatorcontrib>Marcial, Jose</creatorcontrib><creatorcontrib>Hrma, Pavel</creatorcontrib><creatorcontrib>Kruger, Albert A.</creatorcontrib><creatorcontrib>Pokorný, Richard</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Effect of glass forming additives on low-activity waste feed conversion to glass</title><title>Journal of nuclear materials</title><description>A significant effort was invested in the past to develop and refine mathematical models that relate the composition of nuclear waste glasses with their properties, such as viscosity, electrical conductivity, or chemical durability. However, less attention has been paid to the formulation of the melter feed itself, such as the chemical form and the particle size of the glass forming and modifying additives, which have a significant effect on the feed-to-glass conversion process during melting. To address this issue, we systematically changed the mineral composition of a simulated low-activity waste melter feed and inspected its melting behavior. When substituting minerals with corresponding oxides and hydroxides, we found that different alumina sources (kyanite, gibbsite, boehmite, or corundum) had the strongest effect on the feed melting process, whereas the sources of Ca, Mg, and Zr had little effect. The X-ray diffraction analysis showed that the alumina sources differ in their dissolution kinetics: early dissolving alumina sources, such as gibbsite (Al(OH)3) and boehmite (AlO(OH)), increase the transient glass-forming melt viscosity at early stages, when gases still evolve, causing extended foaming, whereas alumina sources that dissolve at high temperatures, such as kyanite (Al2SiO5) and corundum (Al2O3), keep the transient glass-forming melt viscosity low and lead to a faster foam collapse. Using a viscosity-composition relationship to estimate the viscosity of transient glass-forming melts in the primary foaming range, we found that the primary foam began to collapse at 360 to 800 Pa s, and fully collapsed between 65 and 260 Pa s. This result agrees with our previous studies, according to which, the glass-forming melt viscosity at the cold cap foam bottom ranged from 24 to 85 Pa s.</description><subject>Glass melting</subject><subject>Glass-forming additives</subject><subject>MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES</subject><subject>MATERIALS SCIENCE</subject><subject>Nuclear waste</subject><subject>Vitrification</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKAzEUDaJgrX6CENxPvXl1ZlYipT6goAtdh0weNUM7kSS2-PdmmO5d3XvhPO45CN0SWBAgy_t-0Q8_eq_yggLlCyIEADtDM9LUrOINhXM0A6C0YoSIS3SVUg8AogUxQ-9r56zOODi83amUsAtx74ctVsb47A824TDgXThWSpfT5198VClb7Kw1WIfhYGPyBZLDJHCNLpzaJXtzmnP0-bT-WL1Um7fn19XjptK04bkS1nBulpopzbjrHG9NQ4lyrGXQUlG2jnW1rWnbMLFUnWCEdQXuKCvGDWFzdDfphpS9TNpnq7_KP0NJIymHGjgtIDGBdAwpRevkd_R7FX8lATl2J3t56k6O3cmpu8J7mHi2JDh4G0cDO2hrfBz1TfD_KPwBkhp60g</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Vernerová, Miroslava</creator><creator>Šůsová, Karolína</creator><creator>Kohoutková, Martina</creator><creator>Kloužek, Jaroslav</creator><creator>Cincibusová, Petra</creator><creator>Ferkl, Pavel</creator><creator>Marcial, Jose</creator><creator>Hrma, Pavel</creator><creator>Kruger, Albert A.</creator><creator>Pokorný, Richard</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2844-3199</orcidid><orcidid>https://orcid.org/0000-0003-2815-3685</orcidid><orcidid>https://orcid.org/0000-0002-9023-0381</orcidid><orcidid>https://orcid.org/0000-0001-8468-0813</orcidid><orcidid>https://orcid.org/0000000161565310</orcidid><orcidid>https://orcid.org/0000000290230381</orcidid><orcidid>https://orcid.org/0000000328153685</orcidid><orcidid>https://orcid.org/0000000328443199</orcidid><orcidid>https://orcid.org/0000000184680813</orcidid></search><sort><creationdate>20240501</creationdate><title>Effect of glass forming additives on low-activity waste feed conversion to glass</title><author>Vernerová, Miroslava ; Šůsová, Karolína ; Kohoutková, Martina ; Kloužek, Jaroslav ; Cincibusová, Petra ; Ferkl, Pavel ; Marcial, Jose ; Hrma, Pavel ; Kruger, Albert A. ; Pokorný, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-5ed44d6c3ac34fbf49d821af39309251afb3b7e7298356ab5313b6c3f23eed813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Glass melting</topic><topic>Glass-forming additives</topic><topic>MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES</topic><topic>MATERIALS SCIENCE</topic><topic>Nuclear waste</topic><topic>Vitrification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vernerová, Miroslava</creatorcontrib><creatorcontrib>Šůsová, Karolína</creatorcontrib><creatorcontrib>Kohoutková, Martina</creatorcontrib><creatorcontrib>Kloužek, Jaroslav</creatorcontrib><creatorcontrib>Cincibusová, Petra</creatorcontrib><creatorcontrib>Ferkl, Pavel</creatorcontrib><creatorcontrib>Marcial, Jose</creatorcontrib><creatorcontrib>Hrma, Pavel</creatorcontrib><creatorcontrib>Kruger, Albert A.</creatorcontrib><creatorcontrib>Pokorný, Richard</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vernerová, Miroslava</au><au>Šůsová, Karolína</au><au>Kohoutková, Martina</au><au>Kloužek, Jaroslav</au><au>Cincibusová, Petra</au><au>Ferkl, Pavel</au><au>Marcial, Jose</au><au>Hrma, Pavel</au><au>Kruger, Albert A.</au><au>Pokorný, Richard</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of glass forming additives on low-activity waste feed conversion to glass</atitle><jtitle>Journal of nuclear materials</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>593</volume><spage>155003</spage><pages>155003-</pages><artnum>155003</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>A significant effort was invested in the past to develop and refine mathematical models that relate the composition of nuclear waste glasses with their properties, such as viscosity, electrical conductivity, or chemical durability. However, less attention has been paid to the formulation of the melter feed itself, such as the chemical form and the particle size of the glass forming and modifying additives, which have a significant effect on the feed-to-glass conversion process during melting. To address this issue, we systematically changed the mineral composition of a simulated low-activity waste melter feed and inspected its melting behavior. When substituting minerals with corresponding oxides and hydroxides, we found that different alumina sources (kyanite, gibbsite, boehmite, or corundum) had the strongest effect on the feed melting process, whereas the sources of Ca, Mg, and Zr had little effect. The X-ray diffraction analysis showed that the alumina sources differ in their dissolution kinetics: early dissolving alumina sources, such as gibbsite (Al(OH)3) and boehmite (AlO(OH)), increase the transient glass-forming melt viscosity at early stages, when gases still evolve, causing extended foaming, whereas alumina sources that dissolve at high temperatures, such as kyanite (Al2SiO5) and corundum (Al2O3), keep the transient glass-forming melt viscosity low and lead to a faster foam collapse. Using a viscosity-composition relationship to estimate the viscosity of transient glass-forming melts in the primary foaming range, we found that the primary foam began to collapse at 360 to 800 Pa s, and fully collapsed between 65 and 260 Pa s. This result agrees with our previous studies, according to which, the glass-forming melt viscosity at the cold cap foam bottom ranged from 24 to 85 Pa s.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2024.155003</doi><orcidid>https://orcid.org/0000-0003-2844-3199</orcidid><orcidid>https://orcid.org/0000-0003-2815-3685</orcidid><orcidid>https://orcid.org/0000-0002-9023-0381</orcidid><orcidid>https://orcid.org/0000-0001-8468-0813</orcidid><orcidid>https://orcid.org/0000000161565310</orcidid><orcidid>https://orcid.org/0000000290230381</orcidid><orcidid>https://orcid.org/0000000328153685</orcidid><orcidid>https://orcid.org/0000000328443199</orcidid><orcidid>https://orcid.org/0000000184680813</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2024-05, Vol.593, p.155003, Article 155003
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_2407042
source Elsevier ScienceDirect Journals Complete
subjects Glass melting
Glass-forming additives
MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES
MATERIALS SCIENCE
Nuclear waste
Vitrification
title Effect of glass forming additives on low-activity waste feed conversion to glass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20glass%20forming%20additives%20on%20low-activity%20waste%20feed%20conversion%20to%20glass&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Vernerov%C3%A1,%20Miroslava&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-05-01&rft.volume=593&rft.spage=155003&rft.pages=155003-&rft.artnum=155003&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2024.155003&rft_dat=%3Celsevier_osti_%3ES0022311524001065%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022311524001065&rfr_iscdi=true