Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion

Valorizing wet wastes to sustainable aviation fuel (SAF) can be achieved through sequential arrested anaerobic digestion (AAD) to volatile fatty acids (VFAs) and thermochemical catalytic upgrading. Alternatively, conventional anaerobic digestion (AD) can use wet waste to produce biogas (for electric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2024-10, Vol.232 (C), p.121063, Article 121063
Hauptverfasser: Wiatrowski, Matthew R., Miller, Jacob H., Bhatt, Arpit, Tifft, Stephen M., Abdullah, Zia, Tao, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 121063
container_title Renewable energy
container_volume 232
creator Wiatrowski, Matthew R.
Miller, Jacob H.
Bhatt, Arpit
Tifft, Stephen M.
Abdullah, Zia
Tao, Ling
description Valorizing wet wastes to sustainable aviation fuel (SAF) can be achieved through sequential arrested anaerobic digestion (AAD) to volatile fatty acids (VFAs) and thermochemical catalytic upgrading. Alternatively, conventional anaerobic digestion (AD) can use wet waste to produce biogas (for electricity generation), biomethane, or green hydrogen. To assess the VFA-SAF pathway, we conducted a comprehensive techno-economic analysis (TEA) of each approach using Aspen Plus and discounted cash flow models, coupled with life cycle assessment (LCA) to estimate fuel carbon intensity (CI) and evaluate the implications of policy incentives for carbon emissions reduction. First, we calculated the minimum fuel selling price (MFSP) required to meet a 10 % internal rate of return (IRR) for each product without policy incentives. In this scenario, all pathways faced challenges in meeting the market values of equivalent fossil-based products. Next, we examined projected costs for alternative sustainable technologies and found that SAF and biomethane from wet waste were competitive, while electricity and hydrogen costs were significantly higher. Finally, we incorporated current policy incentives; with incentives, all pathways exceeded a 10 % IRR using fossil-equivalent selling prices. Among all the options considered, VFA-SAF produced the most profitable carbon-negative fuel that was economically competitive with alternative sustainable technologies. [Display omitted]
doi_str_mv 10.1016/j.renene.2024.121063
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2406974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148124011315</els_id><sourcerecordid>S0960148124011315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-fcc0eedb842fe378ac76c3989222304deeb45e3c947ed04a224f6ff70c9c39ff3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtv4CK4n5pk0rm4EKTUCxTc1HXIJCc2ZTopSdpSH8GnNtMRl5LFgfCd7-f8CN1SMqGEFvfriYcuvQkjjE8oo6TIz9CIVmWdkaJi52hE6oJklFf0El2FsCaETquSj9D3XLnObazCstM47EKUtpONbW084q13YQsqBmycxweI-CBDBLyXrfP2S0bruge8XAFWMsAJ-jO0gOXenhBsdtBi490GS-8hGXRKk-Bdk3K1_UxfCbtGF0a2AW5-5xh9PM-Xs9ds8f7yNntaZIpRFjOjFAHQTcWZgbyspCoLlddVzRjLCdcADZ9CrmpegiZcMsZNYUxJVJ0wY_Ixuhu8LsWKoGwEtUotdOlSwTgp6pIniA-QSh0ED0Zsvd1IfxSUiL50sRZD6aIvXQylp7XHYQ3SAXsLvvdDp0Bb3-u1s_8LfgB0hZDs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wiatrowski, Matthew R. ; Miller, Jacob H. ; Bhatt, Arpit ; Tifft, Stephen M. ; Abdullah, Zia ; Tao, Ling</creator><creatorcontrib>Wiatrowski, Matthew R. ; Miller, Jacob H. ; Bhatt, Arpit ; Tifft, Stephen M. ; Abdullah, Zia ; Tao, Ling</creatorcontrib><description>Valorizing wet wastes to sustainable aviation fuel (SAF) can be achieved through sequential arrested anaerobic digestion (AAD) to volatile fatty acids (VFAs) and thermochemical catalytic upgrading. Alternatively, conventional anaerobic digestion (AD) can use wet waste to produce biogas (for electricity generation), biomethane, or green hydrogen. To assess the VFA-SAF pathway, we conducted a comprehensive techno-economic analysis (TEA) of each approach using Aspen Plus and discounted cash flow models, coupled with life cycle assessment (LCA) to estimate fuel carbon intensity (CI) and evaluate the implications of policy incentives for carbon emissions reduction. First, we calculated the minimum fuel selling price (MFSP) required to meet a 10 % internal rate of return (IRR) for each product without policy incentives. In this scenario, all pathways faced challenges in meeting the market values of equivalent fossil-based products. Next, we examined projected costs for alternative sustainable technologies and found that SAF and biomethane from wet waste were competitive, while electricity and hydrogen costs were significantly higher. Finally, we incorporated current policy incentives; with incentives, all pathways exceeded a 10 % IRR using fossil-equivalent selling prices. Among all the options considered, VFA-SAF produced the most profitable carbon-negative fuel that was economically competitive with alternative sustainable technologies. [Display omitted]</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2024.121063</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Anaerobic digestion ; Life cycle assessment ; Sustainable aviation fuel ; Techno-economic analysis ; Wet waste</subject><ispartof>Renewable energy, 2024-10, Vol.232 (C), p.121063, Article 121063</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c212t-fcc0eedb842fe378ac76c3989222304deeb45e3c947ed04a224f6ff70c9c39ff3</cites><orcidid>0000-0002-0658-7178 ; 0000-0002-4151-8717 ; 0000-0002-3780-1800 ; 0000-0002-4510-2444 ; 0000000206587178 ; 0000000241518717 ; 0000000237801800 ; 0000000245102444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2024.121063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2406974$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiatrowski, Matthew R.</creatorcontrib><creatorcontrib>Miller, Jacob H.</creatorcontrib><creatorcontrib>Bhatt, Arpit</creatorcontrib><creatorcontrib>Tifft, Stephen M.</creatorcontrib><creatorcontrib>Abdullah, Zia</creatorcontrib><creatorcontrib>Tao, Ling</creatorcontrib><title>Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion</title><title>Renewable energy</title><description>Valorizing wet wastes to sustainable aviation fuel (SAF) can be achieved through sequential arrested anaerobic digestion (AAD) to volatile fatty acids (VFAs) and thermochemical catalytic upgrading. Alternatively, conventional anaerobic digestion (AD) can use wet waste to produce biogas (for electricity generation), biomethane, or green hydrogen. To assess the VFA-SAF pathway, we conducted a comprehensive techno-economic analysis (TEA) of each approach using Aspen Plus and discounted cash flow models, coupled with life cycle assessment (LCA) to estimate fuel carbon intensity (CI) and evaluate the implications of policy incentives for carbon emissions reduction. First, we calculated the minimum fuel selling price (MFSP) required to meet a 10 % internal rate of return (IRR) for each product without policy incentives. In this scenario, all pathways faced challenges in meeting the market values of equivalent fossil-based products. Next, we examined projected costs for alternative sustainable technologies and found that SAF and biomethane from wet waste were competitive, while electricity and hydrogen costs were significantly higher. Finally, we incorporated current policy incentives; with incentives, all pathways exceeded a 10 % IRR using fossil-equivalent selling prices. Among all the options considered, VFA-SAF produced the most profitable carbon-negative fuel that was economically competitive with alternative sustainable technologies. [Display omitted]</description><subject>Anaerobic digestion</subject><subject>Life cycle assessment</subject><subject>Sustainable aviation fuel</subject><subject>Techno-economic analysis</subject><subject>Wet waste</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtv4CK4n5pk0rm4EKTUCxTc1HXIJCc2ZTopSdpSH8GnNtMRl5LFgfCd7-f8CN1SMqGEFvfriYcuvQkjjE8oo6TIz9CIVmWdkaJi52hE6oJklFf0El2FsCaETquSj9D3XLnObazCstM47EKUtpONbW084q13YQsqBmycxweI-CBDBLyXrfP2S0bruge8XAFWMsAJ-jO0gOXenhBsdtBi490GS-8hGXRKk-Bdk3K1_UxfCbtGF0a2AW5-5xh9PM-Xs9ds8f7yNntaZIpRFjOjFAHQTcWZgbyspCoLlddVzRjLCdcADZ9CrmpegiZcMsZNYUxJVJ0wY_Ixuhu8LsWKoGwEtUotdOlSwTgp6pIniA-QSh0ED0Zsvd1IfxSUiL50sRZD6aIvXQylp7XHYQ3SAXsLvvdDp0Bb3-u1s_8LfgB0hZDs</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Wiatrowski, Matthew R.</creator><creator>Miller, Jacob H.</creator><creator>Bhatt, Arpit</creator><creator>Tifft, Stephen M.</creator><creator>Abdullah, Zia</creator><creator>Tao, Ling</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0658-7178</orcidid><orcidid>https://orcid.org/0000-0002-4151-8717</orcidid><orcidid>https://orcid.org/0000-0002-3780-1800</orcidid><orcidid>https://orcid.org/0000-0002-4510-2444</orcidid><orcidid>https://orcid.org/0000000206587178</orcidid><orcidid>https://orcid.org/0000000241518717</orcidid><orcidid>https://orcid.org/0000000237801800</orcidid><orcidid>https://orcid.org/0000000245102444</orcidid></search><sort><creationdate>202410</creationdate><title>Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion</title><author>Wiatrowski, Matthew R. ; Miller, Jacob H. ; Bhatt, Arpit ; Tifft, Stephen M. ; Abdullah, Zia ; Tao, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-fcc0eedb842fe378ac76c3989222304deeb45e3c947ed04a224f6ff70c9c39ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anaerobic digestion</topic><topic>Life cycle assessment</topic><topic>Sustainable aviation fuel</topic><topic>Techno-economic analysis</topic><topic>Wet waste</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiatrowski, Matthew R.</creatorcontrib><creatorcontrib>Miller, Jacob H.</creatorcontrib><creatorcontrib>Bhatt, Arpit</creatorcontrib><creatorcontrib>Tifft, Stephen M.</creatorcontrib><creatorcontrib>Abdullah, Zia</creatorcontrib><creatorcontrib>Tao, Ling</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiatrowski, Matthew R.</au><au>Miller, Jacob H.</au><au>Bhatt, Arpit</au><au>Tifft, Stephen M.</au><au>Abdullah, Zia</au><au>Tao, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion</atitle><jtitle>Renewable energy</jtitle><date>2024-10</date><risdate>2024</risdate><volume>232</volume><issue>C</issue><spage>121063</spage><pages>121063-</pages><artnum>121063</artnum><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Valorizing wet wastes to sustainable aviation fuel (SAF) can be achieved through sequential arrested anaerobic digestion (AAD) to volatile fatty acids (VFAs) and thermochemical catalytic upgrading. Alternatively, conventional anaerobic digestion (AD) can use wet waste to produce biogas (for electricity generation), biomethane, or green hydrogen. To assess the VFA-SAF pathway, we conducted a comprehensive techno-economic analysis (TEA) of each approach using Aspen Plus and discounted cash flow models, coupled with life cycle assessment (LCA) to estimate fuel carbon intensity (CI) and evaluate the implications of policy incentives for carbon emissions reduction. First, we calculated the minimum fuel selling price (MFSP) required to meet a 10 % internal rate of return (IRR) for each product without policy incentives. In this scenario, all pathways faced challenges in meeting the market values of equivalent fossil-based products. Next, we examined projected costs for alternative sustainable technologies and found that SAF and biomethane from wet waste were competitive, while electricity and hydrogen costs were significantly higher. Finally, we incorporated current policy incentives; with incentives, all pathways exceeded a 10 % IRR using fossil-equivalent selling prices. Among all the options considered, VFA-SAF produced the most profitable carbon-negative fuel that was economically competitive with alternative sustainable technologies. [Display omitted]</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2024.121063</doi><orcidid>https://orcid.org/0000-0002-0658-7178</orcidid><orcidid>https://orcid.org/0000-0002-4151-8717</orcidid><orcidid>https://orcid.org/0000-0002-3780-1800</orcidid><orcidid>https://orcid.org/0000-0002-4510-2444</orcidid><orcidid>https://orcid.org/0000000206587178</orcidid><orcidid>https://orcid.org/0000000241518717</orcidid><orcidid>https://orcid.org/0000000237801800</orcidid><orcidid>https://orcid.org/0000000245102444</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2024-10, Vol.232 (C), p.121063, Article 121063
issn 0960-1481
1879-0682
language eng
recordid cdi_osti_scitechconnect_2406974
source Access via ScienceDirect (Elsevier)
subjects Anaerobic digestion
Life cycle assessment
Sustainable aviation fuel
Techno-economic analysis
Wet waste
title Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Economic%20and%20sustainability%20prospects%20for%20wet%20waste%20valorization:%20The%20case%20for%20sustainable%20aviation%20fuel%20from%20arrested%20anaerobic%20digestion&rft.jtitle=Renewable%20energy&rft.au=Wiatrowski,%20Matthew%20R.&rft.date=2024-10&rft.volume=232&rft.issue=C&rft.spage=121063&rft.pages=121063-&rft.artnum=121063&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2024.121063&rft_dat=%3Celsevier_osti_%3ES0960148124011315%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0960148124011315&rfr_iscdi=true