Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion
Valorizing wet wastes to sustainable aviation fuel (SAF) can be achieved through sequential arrested anaerobic digestion (AAD) to volatile fatty acids (VFAs) and thermochemical catalytic upgrading. Alternatively, conventional anaerobic digestion (AD) can use wet waste to produce biogas (for electric...
Gespeichert in:
Veröffentlicht in: | Renewable energy 2024-10, Vol.232 (C), p.121063, Article 121063 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 121063 |
container_title | Renewable energy |
container_volume | 232 |
creator | Wiatrowski, Matthew R. Miller, Jacob H. Bhatt, Arpit Tifft, Stephen M. Abdullah, Zia Tao, Ling |
description | Valorizing wet wastes to sustainable aviation fuel (SAF) can be achieved through sequential arrested anaerobic digestion (AAD) to volatile fatty acids (VFAs) and thermochemical catalytic upgrading. Alternatively, conventional anaerobic digestion (AD) can use wet waste to produce biogas (for electricity generation), biomethane, or green hydrogen. To assess the VFA-SAF pathway, we conducted a comprehensive techno-economic analysis (TEA) of each approach using Aspen Plus and discounted cash flow models, coupled with life cycle assessment (LCA) to estimate fuel carbon intensity (CI) and evaluate the implications of policy incentives for carbon emissions reduction.
First, we calculated the minimum fuel selling price (MFSP) required to meet a 10 % internal rate of return (IRR) for each product without policy incentives. In this scenario, all pathways faced challenges in meeting the market values of equivalent fossil-based products. Next, we examined projected costs for alternative sustainable technologies and found that SAF and biomethane from wet waste were competitive, while electricity and hydrogen costs were significantly higher. Finally, we incorporated current policy incentives; with incentives, all pathways exceeded a 10 % IRR using fossil-equivalent selling prices. Among all the options considered, VFA-SAF produced the most profitable carbon-negative fuel that was economically competitive with alternative sustainable technologies.
[Display omitted] |
doi_str_mv | 10.1016/j.renene.2024.121063 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2406974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148124011315</els_id><sourcerecordid>S0960148124011315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-fcc0eedb842fe378ac76c3989222304deeb45e3c947ed04a224f6ff70c9c39ff3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtv4CK4n5pk0rm4EKTUCxTc1HXIJCc2ZTopSdpSH8GnNtMRl5LFgfCd7-f8CN1SMqGEFvfriYcuvQkjjE8oo6TIz9CIVmWdkaJi52hE6oJklFf0El2FsCaETquSj9D3XLnObazCstM47EKUtpONbW084q13YQsqBmycxweI-CBDBLyXrfP2S0bruge8XAFWMsAJ-jO0gOXenhBsdtBi490GS-8hGXRKk-Bdk3K1_UxfCbtGF0a2AW5-5xh9PM-Xs9ds8f7yNntaZIpRFjOjFAHQTcWZgbyspCoLlddVzRjLCdcADZ9CrmpegiZcMsZNYUxJVJ0wY_Ixuhu8LsWKoGwEtUotdOlSwTgp6pIniA-QSh0ED0Zsvd1IfxSUiL50sRZD6aIvXQylp7XHYQ3SAXsLvvdDp0Bb3-u1s_8LfgB0hZDs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wiatrowski, Matthew R. ; Miller, Jacob H. ; Bhatt, Arpit ; Tifft, Stephen M. ; Abdullah, Zia ; Tao, Ling</creator><creatorcontrib>Wiatrowski, Matthew R. ; Miller, Jacob H. ; Bhatt, Arpit ; Tifft, Stephen M. ; Abdullah, Zia ; Tao, Ling</creatorcontrib><description>Valorizing wet wastes to sustainable aviation fuel (SAF) can be achieved through sequential arrested anaerobic digestion (AAD) to volatile fatty acids (VFAs) and thermochemical catalytic upgrading. Alternatively, conventional anaerobic digestion (AD) can use wet waste to produce biogas (for electricity generation), biomethane, or green hydrogen. To assess the VFA-SAF pathway, we conducted a comprehensive techno-economic analysis (TEA) of each approach using Aspen Plus and discounted cash flow models, coupled with life cycle assessment (LCA) to estimate fuel carbon intensity (CI) and evaluate the implications of policy incentives for carbon emissions reduction.
First, we calculated the minimum fuel selling price (MFSP) required to meet a 10 % internal rate of return (IRR) for each product without policy incentives. In this scenario, all pathways faced challenges in meeting the market values of equivalent fossil-based products. Next, we examined projected costs for alternative sustainable technologies and found that SAF and biomethane from wet waste were competitive, while electricity and hydrogen costs were significantly higher. Finally, we incorporated current policy incentives; with incentives, all pathways exceeded a 10 % IRR using fossil-equivalent selling prices. Among all the options considered, VFA-SAF produced the most profitable carbon-negative fuel that was economically competitive with alternative sustainable technologies.
[Display omitted]</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2024.121063</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Anaerobic digestion ; Life cycle assessment ; Sustainable aviation fuel ; Techno-economic analysis ; Wet waste</subject><ispartof>Renewable energy, 2024-10, Vol.232 (C), p.121063, Article 121063</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c212t-fcc0eedb842fe378ac76c3989222304deeb45e3c947ed04a224f6ff70c9c39ff3</cites><orcidid>0000-0002-0658-7178 ; 0000-0002-4151-8717 ; 0000-0002-3780-1800 ; 0000-0002-4510-2444 ; 0000000206587178 ; 0000000241518717 ; 0000000237801800 ; 0000000245102444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2024.121063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2406974$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiatrowski, Matthew R.</creatorcontrib><creatorcontrib>Miller, Jacob H.</creatorcontrib><creatorcontrib>Bhatt, Arpit</creatorcontrib><creatorcontrib>Tifft, Stephen M.</creatorcontrib><creatorcontrib>Abdullah, Zia</creatorcontrib><creatorcontrib>Tao, Ling</creatorcontrib><title>Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion</title><title>Renewable energy</title><description>Valorizing wet wastes to sustainable aviation fuel (SAF) can be achieved through sequential arrested anaerobic digestion (AAD) to volatile fatty acids (VFAs) and thermochemical catalytic upgrading. Alternatively, conventional anaerobic digestion (AD) can use wet waste to produce biogas (for electricity generation), biomethane, or green hydrogen. To assess the VFA-SAF pathway, we conducted a comprehensive techno-economic analysis (TEA) of each approach using Aspen Plus and discounted cash flow models, coupled with life cycle assessment (LCA) to estimate fuel carbon intensity (CI) and evaluate the implications of policy incentives for carbon emissions reduction.
First, we calculated the minimum fuel selling price (MFSP) required to meet a 10 % internal rate of return (IRR) for each product without policy incentives. In this scenario, all pathways faced challenges in meeting the market values of equivalent fossil-based products. Next, we examined projected costs for alternative sustainable technologies and found that SAF and biomethane from wet waste were competitive, while electricity and hydrogen costs were significantly higher. Finally, we incorporated current policy incentives; with incentives, all pathways exceeded a 10 % IRR using fossil-equivalent selling prices. Among all the options considered, VFA-SAF produced the most profitable carbon-negative fuel that was economically competitive with alternative sustainable technologies.
[Display omitted]</description><subject>Anaerobic digestion</subject><subject>Life cycle assessment</subject><subject>Sustainable aviation fuel</subject><subject>Techno-economic analysis</subject><subject>Wet waste</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtv4CK4n5pk0rm4EKTUCxTc1HXIJCc2ZTopSdpSH8GnNtMRl5LFgfCd7-f8CN1SMqGEFvfriYcuvQkjjE8oo6TIz9CIVmWdkaJi52hE6oJklFf0El2FsCaETquSj9D3XLnObazCstM47EKUtpONbW084q13YQsqBmycxweI-CBDBLyXrfP2S0bruge8XAFWMsAJ-jO0gOXenhBsdtBi490GS-8hGXRKk-Bdk3K1_UxfCbtGF0a2AW5-5xh9PM-Xs9ds8f7yNntaZIpRFjOjFAHQTcWZgbyspCoLlddVzRjLCdcADZ9CrmpegiZcMsZNYUxJVJ0wY_Ixuhu8LsWKoGwEtUotdOlSwTgp6pIniA-QSh0ED0Zsvd1IfxSUiL50sRZD6aIvXQylp7XHYQ3SAXsLvvdDp0Bb3-u1s_8LfgB0hZDs</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Wiatrowski, Matthew R.</creator><creator>Miller, Jacob H.</creator><creator>Bhatt, Arpit</creator><creator>Tifft, Stephen M.</creator><creator>Abdullah, Zia</creator><creator>Tao, Ling</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0658-7178</orcidid><orcidid>https://orcid.org/0000-0002-4151-8717</orcidid><orcidid>https://orcid.org/0000-0002-3780-1800</orcidid><orcidid>https://orcid.org/0000-0002-4510-2444</orcidid><orcidid>https://orcid.org/0000000206587178</orcidid><orcidid>https://orcid.org/0000000241518717</orcidid><orcidid>https://orcid.org/0000000237801800</orcidid><orcidid>https://orcid.org/0000000245102444</orcidid></search><sort><creationdate>202410</creationdate><title>Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion</title><author>Wiatrowski, Matthew R. ; Miller, Jacob H. ; Bhatt, Arpit ; Tifft, Stephen M. ; Abdullah, Zia ; Tao, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-fcc0eedb842fe378ac76c3989222304deeb45e3c947ed04a224f6ff70c9c39ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anaerobic digestion</topic><topic>Life cycle assessment</topic><topic>Sustainable aviation fuel</topic><topic>Techno-economic analysis</topic><topic>Wet waste</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiatrowski, Matthew R.</creatorcontrib><creatorcontrib>Miller, Jacob H.</creatorcontrib><creatorcontrib>Bhatt, Arpit</creatorcontrib><creatorcontrib>Tifft, Stephen M.</creatorcontrib><creatorcontrib>Abdullah, Zia</creatorcontrib><creatorcontrib>Tao, Ling</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiatrowski, Matthew R.</au><au>Miller, Jacob H.</au><au>Bhatt, Arpit</au><au>Tifft, Stephen M.</au><au>Abdullah, Zia</au><au>Tao, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion</atitle><jtitle>Renewable energy</jtitle><date>2024-10</date><risdate>2024</risdate><volume>232</volume><issue>C</issue><spage>121063</spage><pages>121063-</pages><artnum>121063</artnum><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Valorizing wet wastes to sustainable aviation fuel (SAF) can be achieved through sequential arrested anaerobic digestion (AAD) to volatile fatty acids (VFAs) and thermochemical catalytic upgrading. Alternatively, conventional anaerobic digestion (AD) can use wet waste to produce biogas (for electricity generation), biomethane, or green hydrogen. To assess the VFA-SAF pathway, we conducted a comprehensive techno-economic analysis (TEA) of each approach using Aspen Plus and discounted cash flow models, coupled with life cycle assessment (LCA) to estimate fuel carbon intensity (CI) and evaluate the implications of policy incentives for carbon emissions reduction.
First, we calculated the minimum fuel selling price (MFSP) required to meet a 10 % internal rate of return (IRR) for each product without policy incentives. In this scenario, all pathways faced challenges in meeting the market values of equivalent fossil-based products. Next, we examined projected costs for alternative sustainable technologies and found that SAF and biomethane from wet waste were competitive, while electricity and hydrogen costs were significantly higher. Finally, we incorporated current policy incentives; with incentives, all pathways exceeded a 10 % IRR using fossil-equivalent selling prices. Among all the options considered, VFA-SAF produced the most profitable carbon-negative fuel that was economically competitive with alternative sustainable technologies.
[Display omitted]</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2024.121063</doi><orcidid>https://orcid.org/0000-0002-0658-7178</orcidid><orcidid>https://orcid.org/0000-0002-4151-8717</orcidid><orcidid>https://orcid.org/0000-0002-3780-1800</orcidid><orcidid>https://orcid.org/0000-0002-4510-2444</orcidid><orcidid>https://orcid.org/0000000206587178</orcidid><orcidid>https://orcid.org/0000000241518717</orcidid><orcidid>https://orcid.org/0000000237801800</orcidid><orcidid>https://orcid.org/0000000245102444</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2024-10, Vol.232 (C), p.121063, Article 121063 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_osti_scitechconnect_2406974 |
source | Access via ScienceDirect (Elsevier) |
subjects | Anaerobic digestion Life cycle assessment Sustainable aviation fuel Techno-economic analysis Wet waste |
title | Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Economic%20and%20sustainability%20prospects%20for%20wet%20waste%20valorization:%20The%20case%20for%20sustainable%20aviation%20fuel%20from%20arrested%20anaerobic%20digestion&rft.jtitle=Renewable%20energy&rft.au=Wiatrowski,%20Matthew%20R.&rft.date=2024-10&rft.volume=232&rft.issue=C&rft.spage=121063&rft.pages=121063-&rft.artnum=121063&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2024.121063&rft_dat=%3Celsevier_osti_%3ES0960148124011315%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0960148124011315&rfr_iscdi=true |