Evolution of highly multimodal Rayleigh–Taylor instabilities

Rayleigh–Taylor (RT) instabilities are important fluid instabilities that arise in inertial confinement fusion (ICF) capsule implosions, and many other contexts. Multi-mode coupling is observed in experiments and plays a substantial role in material mix from RT instabilities. In this work, we study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:High energy density physics 2024-09, Vol.52, p.101131, Article 101131
Hauptverfasser: Cheng, B., Jing, B., Bradley, P.A., Sauppe, J.P., Roycroft, R.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101131
container_title High energy density physics
container_volume 52
creator Cheng, B.
Jing, B.
Bradley, P.A.
Sauppe, J.P.
Roycroft, R.R.
description Rayleigh–Taylor (RT) instabilities are important fluid instabilities that arise in inertial confinement fusion (ICF) capsule implosions, and many other contexts. Multi-mode coupling is observed in experiments and plays a substantial role in material mix from RT instabilities. In this work, we study the evolution of highly multimodal perturbations (power law distribution) that approximate those found at manufactured material interfaces. We use simulations of over 2000 different perturbations in the LANL code xRAGE to identify distinct phases in the processes of bubble growth and bubble merger which can be visualized in a 2D phase portrait with clear regimes of mode growth and decay. Our results show that the dynamic evolution of the instability strongly depends on the mode of the perturbations and mode interactions. The merger process accelerates bubble growth. A non-Markovian region and a transition of the instability from: (1) initial exponential growth to (2) linear growth and to (3) quadratic growth and asymptotic behavior, are clearly captured in the phase space. We have developed a quantitative model of bubble growth that reproduces the dynamic behavior of ensembles of perturbations. Implications for ICF capsules designed for robustness against instabilities are discussed. (LA-UR-23-24496)
doi_str_mv 10.1016/j.hedp.2024.101131
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2406654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1574181824000569</els_id><sourcerecordid>S1574181824000569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-fb5e437789c23629a7515dfa05ae6dd04c0043d9d8509fb5819fa6b171529cf3</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhbNQsF5ewNXgfmr-TDIXEEFKvUBBkO5DmouTkk5Kkha68x18Q5_ECePa1f9zOOdw-BC6BTwHDPX9dt5rtZ8TTGgWoIIzNAPW0BJaaC_QZYxbjGlFCMzQ4_Lo3SFZPxTeFL397N2p2B1csjuvhCs-xMnpUf35-l6Prw-FHWISG-tssjpeo3MjXNQ3f_cKrZ-X68VruXp_eVs8rUpJcJtKs2GaVk3TdpJUNelEw4ApIzATulYKU5kHqU61DHejuYXOiHoDDTDSSVNdobup1sdkeZQ2adlLPwxaJk4ormtGRxOZTDL4GIM2fB_sToQTB8wzGb7lmQzPZPhEZgw9TCE9rj9aHXK7HqRWNuRy5e1_8V81um8y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolution of highly multimodal Rayleigh–Taylor instabilities</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cheng, B. ; Jing, B. ; Bradley, P.A. ; Sauppe, J.P. ; Roycroft, R.R.</creator><creatorcontrib>Cheng, B. ; Jing, B. ; Bradley, P.A. ; Sauppe, J.P. ; Roycroft, R.R. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Rayleigh–Taylor (RT) instabilities are important fluid instabilities that arise in inertial confinement fusion (ICF) capsule implosions, and many other contexts. Multi-mode coupling is observed in experiments and plays a substantial role in material mix from RT instabilities. In this work, we study the evolution of highly multimodal perturbations (power law distribution) that approximate those found at manufactured material interfaces. We use simulations of over 2000 different perturbations in the LANL code xRAGE to identify distinct phases in the processes of bubble growth and bubble merger which can be visualized in a 2D phase portrait with clear regimes of mode growth and decay. Our results show that the dynamic evolution of the instability strongly depends on the mode of the perturbations and mode interactions. The merger process accelerates bubble growth. A non-Markovian region and a transition of the instability from: (1) initial exponential growth to (2) linear growth and to (3) quadratic growth and asymptotic behavior, are clearly captured in the phase space. We have developed a quantitative model of bubble growth that reproduces the dynamic behavior of ensembles of perturbations. Implications for ICF capsules designed for robustness against instabilities are discussed. (LA-UR-23-24496)</description><identifier>ISSN: 1574-1818</identifier><identifier>DOI: 10.1016/j.hedp.2024.101131</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Bubble merger ; Mixing ; Mode coupling ; Rayleigh-Taylor instabilities ; Rayleigh–Taylor instability ; simulations</subject><ispartof>High energy density physics, 2024-09, Vol.52, p.101131, Article 101131</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c208t-fb5e437789c23629a7515dfa05ae6dd04c0043d9d8509fb5819fa6b171529cf3</cites><orcidid>0000000319672539 ; 0000000162296677 ; 0000000308036967 ; 0000000215071595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.hedp.2024.101131$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2406654$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, B.</creatorcontrib><creatorcontrib>Jing, B.</creatorcontrib><creatorcontrib>Bradley, P.A.</creatorcontrib><creatorcontrib>Sauppe, J.P.</creatorcontrib><creatorcontrib>Roycroft, R.R.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Evolution of highly multimodal Rayleigh–Taylor instabilities</title><title>High energy density physics</title><description>Rayleigh–Taylor (RT) instabilities are important fluid instabilities that arise in inertial confinement fusion (ICF) capsule implosions, and many other contexts. Multi-mode coupling is observed in experiments and plays a substantial role in material mix from RT instabilities. In this work, we study the evolution of highly multimodal perturbations (power law distribution) that approximate those found at manufactured material interfaces. We use simulations of over 2000 different perturbations in the LANL code xRAGE to identify distinct phases in the processes of bubble growth and bubble merger which can be visualized in a 2D phase portrait with clear regimes of mode growth and decay. Our results show that the dynamic evolution of the instability strongly depends on the mode of the perturbations and mode interactions. The merger process accelerates bubble growth. A non-Markovian region and a transition of the instability from: (1) initial exponential growth to (2) linear growth and to (3) quadratic growth and asymptotic behavior, are clearly captured in the phase space. We have developed a quantitative model of bubble growth that reproduces the dynamic behavior of ensembles of perturbations. Implications for ICF capsules designed for robustness against instabilities are discussed. (LA-UR-23-24496)</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Bubble merger</subject><subject>Mixing</subject><subject>Mode coupling</subject><subject>Rayleigh-Taylor instabilities</subject><subject>Rayleigh–Taylor instability</subject><subject>simulations</subject><issn>1574-1818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEYhbNQsF5ewNXgfmr-TDIXEEFKvUBBkO5DmouTkk5Kkha68x18Q5_ECePa1f9zOOdw-BC6BTwHDPX9dt5rtZ8TTGgWoIIzNAPW0BJaaC_QZYxbjGlFCMzQ4_Lo3SFZPxTeFL397N2p2B1csjuvhCs-xMnpUf35-l6Prw-FHWISG-tssjpeo3MjXNQ3f_cKrZ-X68VruXp_eVs8rUpJcJtKs2GaVk3TdpJUNelEw4ApIzATulYKU5kHqU61DHejuYXOiHoDDTDSSVNdobup1sdkeZQ2adlLPwxaJk4ormtGRxOZTDL4GIM2fB_sToQTB8wzGb7lmQzPZPhEZgw9TCE9rj9aHXK7HqRWNuRy5e1_8V81um8y</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Cheng, B.</creator><creator>Jing, B.</creator><creator>Bradley, P.A.</creator><creator>Sauppe, J.P.</creator><creator>Roycroft, R.R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000319672539</orcidid><orcidid>https://orcid.org/0000000162296677</orcidid><orcidid>https://orcid.org/0000000308036967</orcidid><orcidid>https://orcid.org/0000000215071595</orcidid></search><sort><creationdate>20240901</creationdate><title>Evolution of highly multimodal Rayleigh–Taylor instabilities</title><author>Cheng, B. ; Jing, B. ; Bradley, P.A. ; Sauppe, J.P. ; Roycroft, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-fb5e437789c23629a7515dfa05ae6dd04c0043d9d8509fb5819fa6b171529cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Bubble merger</topic><topic>Mixing</topic><topic>Mode coupling</topic><topic>Rayleigh-Taylor instabilities</topic><topic>Rayleigh–Taylor instability</topic><topic>simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, B.</creatorcontrib><creatorcontrib>Jing, B.</creatorcontrib><creatorcontrib>Bradley, P.A.</creatorcontrib><creatorcontrib>Sauppe, J.P.</creatorcontrib><creatorcontrib>Roycroft, R.R.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>High energy density physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, B.</au><au>Jing, B.</au><au>Bradley, P.A.</au><au>Sauppe, J.P.</au><au>Roycroft, R.R.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of highly multimodal Rayleigh–Taylor instabilities</atitle><jtitle>High energy density physics</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>52</volume><spage>101131</spage><pages>101131-</pages><artnum>101131</artnum><issn>1574-1818</issn><abstract>Rayleigh–Taylor (RT) instabilities are important fluid instabilities that arise in inertial confinement fusion (ICF) capsule implosions, and many other contexts. Multi-mode coupling is observed in experiments and plays a substantial role in material mix from RT instabilities. In this work, we study the evolution of highly multimodal perturbations (power law distribution) that approximate those found at manufactured material interfaces. We use simulations of over 2000 different perturbations in the LANL code xRAGE to identify distinct phases in the processes of bubble growth and bubble merger which can be visualized in a 2D phase portrait with clear regimes of mode growth and decay. Our results show that the dynamic evolution of the instability strongly depends on the mode of the perturbations and mode interactions. The merger process accelerates bubble growth. A non-Markovian region and a transition of the instability from: (1) initial exponential growth to (2) linear growth and to (3) quadratic growth and asymptotic behavior, are clearly captured in the phase space. We have developed a quantitative model of bubble growth that reproduces the dynamic behavior of ensembles of perturbations. Implications for ICF capsules designed for robustness against instabilities are discussed. (LA-UR-23-24496)</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.hedp.2024.101131</doi><orcidid>https://orcid.org/0000000319672539</orcidid><orcidid>https://orcid.org/0000000162296677</orcidid><orcidid>https://orcid.org/0000000308036967</orcidid><orcidid>https://orcid.org/0000000215071595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-1818
ispartof High energy density physics, 2024-09, Vol.52, p.101131, Article 101131
issn 1574-1818
language eng
recordid cdi_osti_scitechconnect_2406654
source Access via ScienceDirect (Elsevier)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Bubble merger
Mixing
Mode coupling
Rayleigh-Taylor instabilities
Rayleigh–Taylor instability
simulations
title Evolution of highly multimodal Rayleigh–Taylor instabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20highly%20multimodal%20Rayleigh%E2%80%93Taylor%20instabilities&rft.jtitle=High%20energy%20density%20physics&rft.au=Cheng,%20B.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-09-01&rft.volume=52&rft.spage=101131&rft.pages=101131-&rft.artnum=101131&rft.issn=1574-1818&rft_id=info:doi/10.1016/j.hedp.2024.101131&rft_dat=%3Celsevier_osti_%3ES1574181824000569%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1574181824000569&rfr_iscdi=true