Evolution of highly multimodal Rayleigh–Taylor instabilities
Rayleigh–Taylor (RT) instabilities are important fluid instabilities that arise in inertial confinement fusion (ICF) capsule implosions, and many other contexts. Multi-mode coupling is observed in experiments and plays a substantial role in material mix from RT instabilities. In this work, we study...
Gespeichert in:
Veröffentlicht in: | High energy density physics 2024-09, Vol.52, p.101131, Article 101131 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 101131 |
container_title | High energy density physics |
container_volume | 52 |
creator | Cheng, B. Jing, B. Bradley, P.A. Sauppe, J.P. Roycroft, R.R. |
description | Rayleigh–Taylor (RT) instabilities are important fluid instabilities that arise in inertial confinement fusion (ICF) capsule implosions, and many other contexts. Multi-mode coupling is observed in experiments and plays a substantial role in material mix from RT instabilities. In this work, we study the evolution of highly multimodal perturbations (power law distribution) that approximate those found at manufactured material interfaces. We use simulations of over 2000 different perturbations in the LANL code xRAGE to identify distinct phases in the processes of bubble growth and bubble merger which can be visualized in a 2D phase portrait with clear regimes of mode growth and decay. Our results show that the dynamic evolution of the instability strongly depends on the mode of the perturbations and mode interactions. The merger process accelerates bubble growth. A non-Markovian region and a transition of the instability from: (1) initial exponential growth to (2) linear growth and to (3) quadratic growth and asymptotic behavior, are clearly captured in the phase space. We have developed a quantitative model of bubble growth that reproduces the dynamic behavior of ensembles of perturbations. Implications for ICF capsules designed for robustness against instabilities are discussed. (LA-UR-23-24496) |
doi_str_mv | 10.1016/j.hedp.2024.101131 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2406654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1574181824000569</els_id><sourcerecordid>S1574181824000569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-fb5e437789c23629a7515dfa05ae6dd04c0043d9d8509fb5819fa6b171529cf3</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhbNQsF5ewNXgfmr-TDIXEEFKvUBBkO5DmouTkk5Kkha68x18Q5_ECePa1f9zOOdw-BC6BTwHDPX9dt5rtZ8TTGgWoIIzNAPW0BJaaC_QZYxbjGlFCMzQ4_Lo3SFZPxTeFL397N2p2B1csjuvhCs-xMnpUf35-l6Prw-FHWISG-tssjpeo3MjXNQ3f_cKrZ-X68VruXp_eVs8rUpJcJtKs2GaVk3TdpJUNelEw4ApIzATulYKU5kHqU61DHejuYXOiHoDDTDSSVNdobup1sdkeZQ2adlLPwxaJk4ormtGRxOZTDL4GIM2fB_sToQTB8wzGb7lmQzPZPhEZgw9TCE9rj9aHXK7HqRWNuRy5e1_8V81um8y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolution of highly multimodal Rayleigh–Taylor instabilities</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cheng, B. ; Jing, B. ; Bradley, P.A. ; Sauppe, J.P. ; Roycroft, R.R.</creator><creatorcontrib>Cheng, B. ; Jing, B. ; Bradley, P.A. ; Sauppe, J.P. ; Roycroft, R.R. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Rayleigh–Taylor (RT) instabilities are important fluid instabilities that arise in inertial confinement fusion (ICF) capsule implosions, and many other contexts. Multi-mode coupling is observed in experiments and plays a substantial role in material mix from RT instabilities. In this work, we study the evolution of highly multimodal perturbations (power law distribution) that approximate those found at manufactured material interfaces. We use simulations of over 2000 different perturbations in the LANL code xRAGE to identify distinct phases in the processes of bubble growth and bubble merger which can be visualized in a 2D phase portrait with clear regimes of mode growth and decay. Our results show that the dynamic evolution of the instability strongly depends on the mode of the perturbations and mode interactions. The merger process accelerates bubble growth. A non-Markovian region and a transition of the instability from: (1) initial exponential growth to (2) linear growth and to (3) quadratic growth and asymptotic behavior, are clearly captured in the phase space. We have developed a quantitative model of bubble growth that reproduces the dynamic behavior of ensembles of perturbations. Implications for ICF capsules designed for robustness against instabilities are discussed. (LA-UR-23-24496)</description><identifier>ISSN: 1574-1818</identifier><identifier>DOI: 10.1016/j.hedp.2024.101131</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Bubble merger ; Mixing ; Mode coupling ; Rayleigh-Taylor instabilities ; Rayleigh–Taylor instability ; simulations</subject><ispartof>High energy density physics, 2024-09, Vol.52, p.101131, Article 101131</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c208t-fb5e437789c23629a7515dfa05ae6dd04c0043d9d8509fb5819fa6b171529cf3</cites><orcidid>0000000319672539 ; 0000000162296677 ; 0000000308036967 ; 0000000215071595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.hedp.2024.101131$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2406654$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, B.</creatorcontrib><creatorcontrib>Jing, B.</creatorcontrib><creatorcontrib>Bradley, P.A.</creatorcontrib><creatorcontrib>Sauppe, J.P.</creatorcontrib><creatorcontrib>Roycroft, R.R.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Evolution of highly multimodal Rayleigh–Taylor instabilities</title><title>High energy density physics</title><description>Rayleigh–Taylor (RT) instabilities are important fluid instabilities that arise in inertial confinement fusion (ICF) capsule implosions, and many other contexts. Multi-mode coupling is observed in experiments and plays a substantial role in material mix from RT instabilities. In this work, we study the evolution of highly multimodal perturbations (power law distribution) that approximate those found at manufactured material interfaces. We use simulations of over 2000 different perturbations in the LANL code xRAGE to identify distinct phases in the processes of bubble growth and bubble merger which can be visualized in a 2D phase portrait with clear regimes of mode growth and decay. Our results show that the dynamic evolution of the instability strongly depends on the mode of the perturbations and mode interactions. The merger process accelerates bubble growth. A non-Markovian region and a transition of the instability from: (1) initial exponential growth to (2) linear growth and to (3) quadratic growth and asymptotic behavior, are clearly captured in the phase space. We have developed a quantitative model of bubble growth that reproduces the dynamic behavior of ensembles of perturbations. Implications for ICF capsules designed for robustness against instabilities are discussed. (LA-UR-23-24496)</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Bubble merger</subject><subject>Mixing</subject><subject>Mode coupling</subject><subject>Rayleigh-Taylor instabilities</subject><subject>Rayleigh–Taylor instability</subject><subject>simulations</subject><issn>1574-1818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEYhbNQsF5ewNXgfmr-TDIXEEFKvUBBkO5DmouTkk5Kkha68x18Q5_ECePa1f9zOOdw-BC6BTwHDPX9dt5rtZ8TTGgWoIIzNAPW0BJaaC_QZYxbjGlFCMzQ4_Lo3SFZPxTeFL397N2p2B1csjuvhCs-xMnpUf35-l6Prw-FHWISG-tssjpeo3MjXNQ3f_cKrZ-X68VruXp_eVs8rUpJcJtKs2GaVk3TdpJUNelEw4ApIzATulYKU5kHqU61DHejuYXOiHoDDTDSSVNdobup1sdkeZQ2adlLPwxaJk4ormtGRxOZTDL4GIM2fB_sToQTB8wzGb7lmQzPZPhEZgw9TCE9rj9aHXK7HqRWNuRy5e1_8V81um8y</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Cheng, B.</creator><creator>Jing, B.</creator><creator>Bradley, P.A.</creator><creator>Sauppe, J.P.</creator><creator>Roycroft, R.R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000319672539</orcidid><orcidid>https://orcid.org/0000000162296677</orcidid><orcidid>https://orcid.org/0000000308036967</orcidid><orcidid>https://orcid.org/0000000215071595</orcidid></search><sort><creationdate>20240901</creationdate><title>Evolution of highly multimodal Rayleigh–Taylor instabilities</title><author>Cheng, B. ; Jing, B. ; Bradley, P.A. ; Sauppe, J.P. ; Roycroft, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-fb5e437789c23629a7515dfa05ae6dd04c0043d9d8509fb5819fa6b171529cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Bubble merger</topic><topic>Mixing</topic><topic>Mode coupling</topic><topic>Rayleigh-Taylor instabilities</topic><topic>Rayleigh–Taylor instability</topic><topic>simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, B.</creatorcontrib><creatorcontrib>Jing, B.</creatorcontrib><creatorcontrib>Bradley, P.A.</creatorcontrib><creatorcontrib>Sauppe, J.P.</creatorcontrib><creatorcontrib>Roycroft, R.R.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>High energy density physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, B.</au><au>Jing, B.</au><au>Bradley, P.A.</au><au>Sauppe, J.P.</au><au>Roycroft, R.R.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of highly multimodal Rayleigh–Taylor instabilities</atitle><jtitle>High energy density physics</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>52</volume><spage>101131</spage><pages>101131-</pages><artnum>101131</artnum><issn>1574-1818</issn><abstract>Rayleigh–Taylor (RT) instabilities are important fluid instabilities that arise in inertial confinement fusion (ICF) capsule implosions, and many other contexts. Multi-mode coupling is observed in experiments and plays a substantial role in material mix from RT instabilities. In this work, we study the evolution of highly multimodal perturbations (power law distribution) that approximate those found at manufactured material interfaces. We use simulations of over 2000 different perturbations in the LANL code xRAGE to identify distinct phases in the processes of bubble growth and bubble merger which can be visualized in a 2D phase portrait with clear regimes of mode growth and decay. Our results show that the dynamic evolution of the instability strongly depends on the mode of the perturbations and mode interactions. The merger process accelerates bubble growth. A non-Markovian region and a transition of the instability from: (1) initial exponential growth to (2) linear growth and to (3) quadratic growth and asymptotic behavior, are clearly captured in the phase space. We have developed a quantitative model of bubble growth that reproduces the dynamic behavior of ensembles of perturbations. Implications for ICF capsules designed for robustness against instabilities are discussed. (LA-UR-23-24496)</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.hedp.2024.101131</doi><orcidid>https://orcid.org/0000000319672539</orcidid><orcidid>https://orcid.org/0000000162296677</orcidid><orcidid>https://orcid.org/0000000308036967</orcidid><orcidid>https://orcid.org/0000000215071595</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-1818 |
ispartof | High energy density physics, 2024-09, Vol.52, p.101131, Article 101131 |
issn | 1574-1818 |
language | eng |
recordid | cdi_osti_scitechconnect_2406654 |
source | Access via ScienceDirect (Elsevier) |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Bubble merger Mixing Mode coupling Rayleigh-Taylor instabilities Rayleigh–Taylor instability simulations |
title | Evolution of highly multimodal Rayleigh–Taylor instabilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20highly%20multimodal%20Rayleigh%E2%80%93Taylor%20instabilities&rft.jtitle=High%20energy%20density%20physics&rft.au=Cheng,%20B.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-09-01&rft.volume=52&rft.spage=101131&rft.pages=101131-&rft.artnum=101131&rft.issn=1574-1818&rft_id=info:doi/10.1016/j.hedp.2024.101131&rft_dat=%3Celsevier_osti_%3ES1574181824000569%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1574181824000569&rfr_iscdi=true |