Integrated frequency-modulated optical parametric oscillator
Optical frequency combs have revolutionized precision measurement, time-keeping and molecular spectroscopy 1 – 7 . A substantial effort has developed around ‘microcombs’: integrating comb-generating technologies into compact photonic platforms 5 , 7 – 9 . Current approaches for generating these micr...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-03, Vol.627 (8002), p.95-100 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 8002 |
container_start_page | 95 |
container_title | Nature (London) |
container_volume | 627 |
creator | Stokowski, Hubert S. Dean, Devin J. Hwang, Alexander Y. Park, Taewon Celik, Oguz Tolga McKenna, Timothy P. Jankowski, Marc Langrock, Carsten Ansari, Vahid Fejer, Martin M. Safavi-Naeini, Amir H. |
description | Optical frequency combs have revolutionized precision measurement, time-keeping and molecular spectroscopy
1
–
7
. A substantial effort has developed around ‘microcombs’: integrating comb-generating technologies into compact photonic platforms
5
,
7
–
9
. Current approaches for generating these microcombs involve either the electro-optic
10
or Kerr mechanisms
11
. Despite rapid progress, maintaining high efficiency and wide bandwidth remains challenging. Here we introduce a previously unknown class of microcomb—an integrated device that combines electro-optics and parametric amplification to yield a frequency-modulated optical parametric oscillator (FM-OPO). In contrast to the other solutions, it does not form pulses but maintains operational simplicity and highly efficient pump power use with an output resembling a frequency-modulated laser
12
. We outline the working principles of our device and demonstrate it by fabricating the complete optical system in thin-film lithium niobate. We measure pump-to-comb internal conversion efficiency exceeding 93% (34% out-coupled) over a nearly flat-top spectral distribution spanning about 200 modes (over 1 THz). Compared with an electro-optic comb, the cavity dispersion rather than loss determines the FM-OPO bandwidth, enabling broadband combs with a smaller radio-frequency modulation power. The FM-OPO microcomb offers robust operational dynamics, high efficiency and broad bandwidth, promising compact precision tools for metrology, spectroscopy, telecommunications, sensing and computing.
An integrated device that combines optical parametric oscillation and electro-optic modulation in lithium niobate creates a flat-top frequency-comb-like output with low power requirements. |
doi_str_mv | 10.1038/s41586-024-07071-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2405195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954927245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c81274da39f485d51103ff13994d3e6951266dcf8333c344e4021ebea48615003</originalsourceid><addsrcrecordid>eNp9kUlLBDEQhYMoOi5_wIMMevESzVJZGrzI4AaCFz2HNl2tLdOdMUkf_PdG2wU8eAqkvnr1qh4h-5ydcCbtaQKurKZMAGWGGU7FGplxMJqCtmadzBgTljIr9RbZTumFMaa4gU2yJS2A1ZWZkbObIeNTrDM28zbi64iDf6N9aMbl519Y5c7Xy_mqjnWPOXZ-HpLvlqUa4i7ZaOtlwr2vd4c8XF7cL67p7d3VzeL8lnpgIlNvuTDQ1LJqwapG8eK-bbmsKmgk6kpxoXXjWyul9BIASxfHR6yLR64YkzvkcNINKXeujM_on30YBvTZCShbVapAxxO0iqGskbLru-SxOB0wjMmJCgS3SoMp6NEf9CWMcSgrFEpBJYyAD0ExUT6GlCK2bhW7vo5vjjP3EYCbAnAlAPcZgBOl6eBLenzssflp-b54AeQEpFIanjD-zv5H9h3-j45z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954927245</pqid></control><display><type>article</type><title>Integrated frequency-modulated optical parametric oscillator</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Stokowski, Hubert S. ; Dean, Devin J. ; Hwang, Alexander Y. ; Park, Taewon ; Celik, Oguz Tolga ; McKenna, Timothy P. ; Jankowski, Marc ; Langrock, Carsten ; Ansari, Vahid ; Fejer, Martin M. ; Safavi-Naeini, Amir H.</creator><creatorcontrib>Stokowski, Hubert S. ; Dean, Devin J. ; Hwang, Alexander Y. ; Park, Taewon ; Celik, Oguz Tolga ; McKenna, Timothy P. ; Jankowski, Marc ; Langrock, Carsten ; Ansari, Vahid ; Fejer, Martin M. ; Safavi-Naeini, Amir H. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Optical frequency combs have revolutionized precision measurement, time-keeping and molecular spectroscopy
1
–
7
. A substantial effort has developed around ‘microcombs’: integrating comb-generating technologies into compact photonic platforms
5
,
7
–
9
. Current approaches for generating these microcombs involve either the electro-optic
10
or Kerr mechanisms
11
. Despite rapid progress, maintaining high efficiency and wide bandwidth remains challenging. Here we introduce a previously unknown class of microcomb—an integrated device that combines electro-optics and parametric amplification to yield a frequency-modulated optical parametric oscillator (FM-OPO). In contrast to the other solutions, it does not form pulses but maintains operational simplicity and highly efficient pump power use with an output resembling a frequency-modulated laser
12
. We outline the working principles of our device and demonstrate it by fabricating the complete optical system in thin-film lithium niobate. We measure pump-to-comb internal conversion efficiency exceeding 93% (34% out-coupled) over a nearly flat-top spectral distribution spanning about 200 modes (over 1 THz). Compared with an electro-optic comb, the cavity dispersion rather than loss determines the FM-OPO bandwidth, enabling broadband combs with a smaller radio-frequency modulation power. The FM-OPO microcomb offers robust operational dynamics, high efficiency and broad bandwidth, promising compact precision tools for metrology, spectroscopy, telecommunications, sensing and computing.
An integrated device that combines optical parametric oscillation and electro-optic modulation in lithium niobate creates a flat-top frequency-comb-like output with low power requirements.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07071-2</identifier><identifier>PMID: 38448697</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 142/126 ; 639/624/1075/1079 ; 639/624/1111/1112 ; 639/624/399/1097 ; 639/624/400/385 ; 639/766/400/385 ; Bandwidths ; Broadband ; Efficiency ; Electro-optics ; ENGINEERING ; frequency combs ; Frequency dependence ; Frequency modulation ; Humanities and Social Sciences ; integrated optics ; Internal conversion ; Lasers ; Lithium ; microresonators ; multidisciplinary ; nonlinear optics ; Optical frequency ; Optical Parametric Oscillators ; Optics ; Oscillators ; Parametric amplifiers ; Science ; Science (multidisciplinary) ; Silicon nitride ; Spectroscopy ; Thin films</subject><ispartof>Nature (London), 2024-03, Vol.627 (8002), p.95-100</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Mar 7, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-c81274da39f485d51103ff13994d3e6951266dcf8333c344e4021ebea48615003</citedby><cites>FETCH-LOGICAL-c402t-c81274da39f485d51103ff13994d3e6951266dcf8333c344e4021ebea48615003</cites><orcidid>0000-0001-6176-1274 ; 0000-0001-9719-4048 ; 0000-0002-4020-0627 ; 0000-0002-5512-1905 ; 0000-0001-6416-9639 ; 0000-0002-6454-2306 ; 0000000197194048 ; 0000000164169639 ; 0000000240200627 ; 0000000264542306 ; 0000000255121905 ; 0000000161761274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07071-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07071-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38448697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2405195$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stokowski, Hubert S.</creatorcontrib><creatorcontrib>Dean, Devin J.</creatorcontrib><creatorcontrib>Hwang, Alexander Y.</creatorcontrib><creatorcontrib>Park, Taewon</creatorcontrib><creatorcontrib>Celik, Oguz Tolga</creatorcontrib><creatorcontrib>McKenna, Timothy P.</creatorcontrib><creatorcontrib>Jankowski, Marc</creatorcontrib><creatorcontrib>Langrock, Carsten</creatorcontrib><creatorcontrib>Ansari, Vahid</creatorcontrib><creatorcontrib>Fejer, Martin M.</creatorcontrib><creatorcontrib>Safavi-Naeini, Amir H.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Integrated frequency-modulated optical parametric oscillator</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Optical frequency combs have revolutionized precision measurement, time-keeping and molecular spectroscopy
1
–
7
. A substantial effort has developed around ‘microcombs’: integrating comb-generating technologies into compact photonic platforms
5
,
7
–
9
. Current approaches for generating these microcombs involve either the electro-optic
10
or Kerr mechanisms
11
. Despite rapid progress, maintaining high efficiency and wide bandwidth remains challenging. Here we introduce a previously unknown class of microcomb—an integrated device that combines electro-optics and parametric amplification to yield a frequency-modulated optical parametric oscillator (FM-OPO). In contrast to the other solutions, it does not form pulses but maintains operational simplicity and highly efficient pump power use with an output resembling a frequency-modulated laser
12
. We outline the working principles of our device and demonstrate it by fabricating the complete optical system in thin-film lithium niobate. We measure pump-to-comb internal conversion efficiency exceeding 93% (34% out-coupled) over a nearly flat-top spectral distribution spanning about 200 modes (over 1 THz). Compared with an electro-optic comb, the cavity dispersion rather than loss determines the FM-OPO bandwidth, enabling broadband combs with a smaller radio-frequency modulation power. The FM-OPO microcomb offers robust operational dynamics, high efficiency and broad bandwidth, promising compact precision tools for metrology, spectroscopy, telecommunications, sensing and computing.
An integrated device that combines optical parametric oscillation and electro-optic modulation in lithium niobate creates a flat-top frequency-comb-like output with low power requirements.</description><subject>140/125</subject><subject>142/126</subject><subject>639/624/1075/1079</subject><subject>639/624/1111/1112</subject><subject>639/624/399/1097</subject><subject>639/624/400/385</subject><subject>639/766/400/385</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Efficiency</subject><subject>Electro-optics</subject><subject>ENGINEERING</subject><subject>frequency combs</subject><subject>Frequency dependence</subject><subject>Frequency modulation</subject><subject>Humanities and Social Sciences</subject><subject>integrated optics</subject><subject>Internal conversion</subject><subject>Lasers</subject><subject>Lithium</subject><subject>microresonators</subject><subject>multidisciplinary</subject><subject>nonlinear optics</subject><subject>Optical frequency</subject><subject>Optical Parametric Oscillators</subject><subject>Optics</subject><subject>Oscillators</subject><subject>Parametric amplifiers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon nitride</subject><subject>Spectroscopy</subject><subject>Thin films</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUlLBDEQhYMoOi5_wIMMevESzVJZGrzI4AaCFz2HNl2tLdOdMUkf_PdG2wU8eAqkvnr1qh4h-5ydcCbtaQKurKZMAGWGGU7FGplxMJqCtmadzBgTljIr9RbZTumFMaa4gU2yJS2A1ZWZkbObIeNTrDM28zbi64iDf6N9aMbl519Y5c7Xy_mqjnWPOXZ-HpLvlqUa4i7ZaOtlwr2vd4c8XF7cL67p7d3VzeL8lnpgIlNvuTDQ1LJqwapG8eK-bbmsKmgk6kpxoXXjWyul9BIASxfHR6yLR64YkzvkcNINKXeujM_on30YBvTZCShbVapAxxO0iqGskbLru-SxOB0wjMmJCgS3SoMp6NEf9CWMcSgrFEpBJYyAD0ExUT6GlCK2bhW7vo5vjjP3EYCbAnAlAPcZgBOl6eBLenzssflp-b54AeQEpFIanjD-zv5H9h3-j45z</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Stokowski, Hubert S.</creator><creator>Dean, Devin J.</creator><creator>Hwang, Alexander Y.</creator><creator>Park, Taewon</creator><creator>Celik, Oguz Tolga</creator><creator>McKenna, Timothy P.</creator><creator>Jankowski, Marc</creator><creator>Langrock, Carsten</creator><creator>Ansari, Vahid</creator><creator>Fejer, Martin M.</creator><creator>Safavi-Naeini, Amir H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6176-1274</orcidid><orcidid>https://orcid.org/0000-0001-9719-4048</orcidid><orcidid>https://orcid.org/0000-0002-4020-0627</orcidid><orcidid>https://orcid.org/0000-0002-5512-1905</orcidid><orcidid>https://orcid.org/0000-0001-6416-9639</orcidid><orcidid>https://orcid.org/0000-0002-6454-2306</orcidid><orcidid>https://orcid.org/0000000197194048</orcidid><orcidid>https://orcid.org/0000000164169639</orcidid><orcidid>https://orcid.org/0000000240200627</orcidid><orcidid>https://orcid.org/0000000264542306</orcidid><orcidid>https://orcid.org/0000000255121905</orcidid><orcidid>https://orcid.org/0000000161761274</orcidid></search><sort><creationdate>20240307</creationdate><title>Integrated frequency-modulated optical parametric oscillator</title><author>Stokowski, Hubert S. ; Dean, Devin J. ; Hwang, Alexander Y. ; Park, Taewon ; Celik, Oguz Tolga ; McKenna, Timothy P. ; Jankowski, Marc ; Langrock, Carsten ; Ansari, Vahid ; Fejer, Martin M. ; Safavi-Naeini, Amir H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c81274da39f485d51103ff13994d3e6951266dcf8333c344e4021ebea48615003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/125</topic><topic>142/126</topic><topic>639/624/1075/1079</topic><topic>639/624/1111/1112</topic><topic>639/624/399/1097</topic><topic>639/624/400/385</topic><topic>639/766/400/385</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Efficiency</topic><topic>Electro-optics</topic><topic>ENGINEERING</topic><topic>frequency combs</topic><topic>Frequency dependence</topic><topic>Frequency modulation</topic><topic>Humanities and Social Sciences</topic><topic>integrated optics</topic><topic>Internal conversion</topic><topic>Lasers</topic><topic>Lithium</topic><topic>microresonators</topic><topic>multidisciplinary</topic><topic>nonlinear optics</topic><topic>Optical frequency</topic><topic>Optical Parametric Oscillators</topic><topic>Optics</topic><topic>Oscillators</topic><topic>Parametric amplifiers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon nitride</topic><topic>Spectroscopy</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stokowski, Hubert S.</creatorcontrib><creatorcontrib>Dean, Devin J.</creatorcontrib><creatorcontrib>Hwang, Alexander Y.</creatorcontrib><creatorcontrib>Park, Taewon</creatorcontrib><creatorcontrib>Celik, Oguz Tolga</creatorcontrib><creatorcontrib>McKenna, Timothy P.</creatorcontrib><creatorcontrib>Jankowski, Marc</creatorcontrib><creatorcontrib>Langrock, Carsten</creatorcontrib><creatorcontrib>Ansari, Vahid</creatorcontrib><creatorcontrib>Fejer, Martin M.</creatorcontrib><creatorcontrib>Safavi-Naeini, Amir H.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stokowski, Hubert S.</au><au>Dean, Devin J.</au><au>Hwang, Alexander Y.</au><au>Park, Taewon</au><au>Celik, Oguz Tolga</au><au>McKenna, Timothy P.</au><au>Jankowski, Marc</au><au>Langrock, Carsten</au><au>Ansari, Vahid</au><au>Fejer, Martin M.</au><au>Safavi-Naeini, Amir H.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated frequency-modulated optical parametric oscillator</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-03-07</date><risdate>2024</risdate><volume>627</volume><issue>8002</issue><spage>95</spage><epage>100</epage><pages>95-100</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Optical frequency combs have revolutionized precision measurement, time-keeping and molecular spectroscopy
1
–
7
. A substantial effort has developed around ‘microcombs’: integrating comb-generating technologies into compact photonic platforms
5
,
7
–
9
. Current approaches for generating these microcombs involve either the electro-optic
10
or Kerr mechanisms
11
. Despite rapid progress, maintaining high efficiency and wide bandwidth remains challenging. Here we introduce a previously unknown class of microcomb—an integrated device that combines electro-optics and parametric amplification to yield a frequency-modulated optical parametric oscillator (FM-OPO). In contrast to the other solutions, it does not form pulses but maintains operational simplicity and highly efficient pump power use with an output resembling a frequency-modulated laser
12
. We outline the working principles of our device and demonstrate it by fabricating the complete optical system in thin-film lithium niobate. We measure pump-to-comb internal conversion efficiency exceeding 93% (34% out-coupled) over a nearly flat-top spectral distribution spanning about 200 modes (over 1 THz). Compared with an electro-optic comb, the cavity dispersion rather than loss determines the FM-OPO bandwidth, enabling broadband combs with a smaller radio-frequency modulation power. The FM-OPO microcomb offers robust operational dynamics, high efficiency and broad bandwidth, promising compact precision tools for metrology, spectroscopy, telecommunications, sensing and computing.
An integrated device that combines optical parametric oscillation and electro-optic modulation in lithium niobate creates a flat-top frequency-comb-like output with low power requirements.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38448697</pmid><doi>10.1038/s41586-024-07071-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6176-1274</orcidid><orcidid>https://orcid.org/0000-0001-9719-4048</orcidid><orcidid>https://orcid.org/0000-0002-4020-0627</orcidid><orcidid>https://orcid.org/0000-0002-5512-1905</orcidid><orcidid>https://orcid.org/0000-0001-6416-9639</orcidid><orcidid>https://orcid.org/0000-0002-6454-2306</orcidid><orcidid>https://orcid.org/0000000197194048</orcidid><orcidid>https://orcid.org/0000000164169639</orcidid><orcidid>https://orcid.org/0000000240200627</orcidid><orcidid>https://orcid.org/0000000264542306</orcidid><orcidid>https://orcid.org/0000000255121905</orcidid><orcidid>https://orcid.org/0000000161761274</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-03, Vol.627 (8002), p.95-100 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_2405195 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 140/125 142/126 639/624/1075/1079 639/624/1111/1112 639/624/399/1097 639/624/400/385 639/766/400/385 Bandwidths Broadband Efficiency Electro-optics ENGINEERING frequency combs Frequency dependence Frequency modulation Humanities and Social Sciences integrated optics Internal conversion Lasers Lithium microresonators multidisciplinary nonlinear optics Optical frequency Optical Parametric Oscillators Optics Oscillators Parametric amplifiers Science Science (multidisciplinary) Silicon nitride Spectroscopy Thin films |
title | Integrated frequency-modulated optical parametric oscillator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20frequency-modulated%20optical%20parametric%20oscillator&rft.jtitle=Nature%20(London)&rft.au=Stokowski,%20Hubert%20S.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2024-03-07&rft.volume=627&rft.issue=8002&rft.spage=95&rft.epage=100&rft.pages=95-100&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07071-2&rft_dat=%3Cproquest_osti_%3E2954927245%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2954927245&rft_id=info:pmid/38448697&rfr_iscdi=true |