Atomically Local Electric Field Induced Interface Water Reorientation for Alkaline Hydrogen Evolution Reaction

The slow water dissociation process in alkaline electrolyte severely limits the kinetics of HER. The orientation of H2O is well known to affect the dissociation process, but H2O orientation is hard to control because of its random distribution. Herein, an atomically asymmetric local electric field w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-06, Vol.62 (26), p.e202300873-n/a
Hauptverfasser: Cai, Chao, Liu, Kang, Zhang, Long, Li, Fangbiao, Tan, Yao, Li, Pengcheng, Wang, Yanqiu, Wang, Maoyu, Feng, Zhenxing, Motta Meira, Debora, Qu, Wenqiang, Stefancu, Andrei, Li, Wenzhang, Li, Hongmei, Fu, Junwei, Wang, Hui, Zhang, Dengsong, Cortés, Emiliano, Liu, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page e202300873
container_title Angewandte Chemie International Edition
container_volume 62
creator Cai, Chao
Liu, Kang
Zhang, Long
Li, Fangbiao
Tan, Yao
Li, Pengcheng
Wang, Yanqiu
Wang, Maoyu
Feng, Zhenxing
Motta Meira, Debora
Qu, Wenqiang
Stefancu, Andrei
Li, Wenzhang
Li, Hongmei
Fu, Junwei
Wang, Hui
Zhang, Dengsong
Cortés, Emiliano
Liu, Min
description The slow water dissociation process in alkaline electrolyte severely limits the kinetics of HER. The orientation of H2O is well known to affect the dissociation process, but H2O orientation is hard to control because of its random distribution. Herein, an atomically asymmetric local electric field was designed by IrRu dizygotic single‐atom sites (IrRu DSACs) to tune the H2O adsorption configuration and orientation, thus optimizing its dissociation process. The electric field intensity of IrRu DSACs is over 4.00×1010 N/C. The ab initio molecular dynamics simulations combined with in situ Raman spectroscopy analysis on the adsorption behavior of H2O show that the M−H bond length (M=active site) is shortened at the interface due to the strong local electric field gradient and the optimized water orientation promotes the dissociation process of interfacial water. This work provides a new way to explore the role of single atomic sites in alkaline hydrogen evolution reaction. Breaking the periodic surface of catalysts by the inclusion of single atoms can help building atomic electric fields that highly promote the hydrogen evolution reaction activity. We show here that this is achieved by modulating the interfacial water orientation and by subsequently decreasing the active sites‐hydrogen distance.
doi_str_mv 10.1002/anie.202300873
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2404998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784837084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4403-9dcdf2b00cd018cd97ce052704f9f841ba0d2a1910dcdd9563d273fa1d5a28e33</originalsourceid><addsrcrecordid>eNqFkc1rVDEUxYMo9sutSwm6cfOm-XqTZDmUqR0YLBSly5BJ7tPUTFKT9yrz35vp1ApuXJ0D93cP3HsQekvJjBLCzm0KMGOEcUKU5C_QMe0Z7biU_GXzgvNOqp4eoZNa7xqvFJm_Rkd8rhSXWh-jtBjzNjgb4w6vc1O8jODGEhy-DBA9XiU_OdjrCGWwDvCtbQ7fQC4B0mjHkBMecsGL-MPGkABf7XzJ3yDh5UOO0-P8BqzbmzP0arCxwpsnPUVfL5dfLq669fWn1cVi3TkhCO-0d35gG0KcJ1Q5r6UD0jNJxKAHJejGEs8s1ZQ00Ot-zj2TfLDU95Yp4PwUvT_k5joGU10YwX13OaV2m2GCCK1Vgz4eoPuSf05QR7MN1UGMNkGeqmFSifYmokRDP_yD3uWppHaCYYrNe96LXjdqdqBcybUWGMx9CVtbdoYSs6_L7Osyz3W1hXdPsdNmC_4Z_9NPA_QB-BUi7P4TZxafV8u_4b8B8YGhdg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826535459</pqid></control><display><type>article</type><title>Atomically Local Electric Field Induced Interface Water Reorientation for Alkaline Hydrogen Evolution Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cai, Chao ; Liu, Kang ; Zhang, Long ; Li, Fangbiao ; Tan, Yao ; Li, Pengcheng ; Wang, Yanqiu ; Wang, Maoyu ; Feng, Zhenxing ; Motta Meira, Debora ; Qu, Wenqiang ; Stefancu, Andrei ; Li, Wenzhang ; Li, Hongmei ; Fu, Junwei ; Wang, Hui ; Zhang, Dengsong ; Cortés, Emiliano ; Liu, Min</creator><creatorcontrib>Cai, Chao ; Liu, Kang ; Zhang, Long ; Li, Fangbiao ; Tan, Yao ; Li, Pengcheng ; Wang, Yanqiu ; Wang, Maoyu ; Feng, Zhenxing ; Motta Meira, Debora ; Qu, Wenqiang ; Stefancu, Andrei ; Li, Wenzhang ; Li, Hongmei ; Fu, Junwei ; Wang, Hui ; Zhang, Dengsong ; Cortés, Emiliano ; Liu, Min ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>The slow water dissociation process in alkaline electrolyte severely limits the kinetics of HER. The orientation of H2O is well known to affect the dissociation process, but H2O orientation is hard to control because of its random distribution. Herein, an atomically asymmetric local electric field was designed by IrRu dizygotic single‐atom sites (IrRu DSACs) to tune the H2O adsorption configuration and orientation, thus optimizing its dissociation process. The electric field intensity of IrRu DSACs is over 4.00×1010 N/C. The ab initio molecular dynamics simulations combined with in situ Raman spectroscopy analysis on the adsorption behavior of H2O show that the M−H bond length (M=active site) is shortened at the interface due to the strong local electric field gradient and the optimized water orientation promotes the dissociation process of interfacial water. This work provides a new way to explore the role of single atomic sites in alkaline hydrogen evolution reaction. Breaking the periodic surface of catalysts by the inclusion of single atoms can help building atomic electric fields that highly promote the hydrogen evolution reaction activity. We show here that this is achieved by modulating the interfacial water orientation and by subsequently decreasing the active sites‐hydrogen distance.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202300873</identifier><identifier>PMID: 36883799</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Alkaline HER ; Atomic Charge Distribution ; Electric fields ; Electricity ; Hydrogen ; Hydrogen bonds ; Hydrogen evolution reactions ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Interfacial Water Orientation ; Kinetics ; Molecular dynamics ; Orientation ; Raman spectroscopy ; Single-Atom Site ; Water ; Water Dissociation</subject><ispartof>Angewandte Chemie International Edition, 2023-06, Vol.62 (26), p.e202300873-n/a</ispartof><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4403-9dcdf2b00cd018cd97ce052704f9f841ba0d2a1910dcdd9563d273fa1d5a28e33</citedby><cites>FETCH-LOGICAL-c4403-9dcdf2b00cd018cd97ce052704f9f841ba0d2a1910dcdd9563d273fa1d5a28e33</cites><orcidid>0000-0001-8248-4165 ; 0000-0003-4280-0068 ; 0000-0002-3367-1922 ; 0000000233671922 ; 0000000182484165 ; 0000000342800068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202300873$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202300873$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36883799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2404998$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Chao</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Li, Fangbiao</creatorcontrib><creatorcontrib>Tan, Yao</creatorcontrib><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Wang, Yanqiu</creatorcontrib><creatorcontrib>Wang, Maoyu</creatorcontrib><creatorcontrib>Feng, Zhenxing</creatorcontrib><creatorcontrib>Motta Meira, Debora</creatorcontrib><creatorcontrib>Qu, Wenqiang</creatorcontrib><creatorcontrib>Stefancu, Andrei</creatorcontrib><creatorcontrib>Li, Wenzhang</creatorcontrib><creatorcontrib>Li, Hongmei</creatorcontrib><creatorcontrib>Fu, Junwei</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Dengsong</creatorcontrib><creatorcontrib>Cortés, Emiliano</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Atomically Local Electric Field Induced Interface Water Reorientation for Alkaline Hydrogen Evolution Reaction</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The slow water dissociation process in alkaline electrolyte severely limits the kinetics of HER. The orientation of H2O is well known to affect the dissociation process, but H2O orientation is hard to control because of its random distribution. Herein, an atomically asymmetric local electric field was designed by IrRu dizygotic single‐atom sites (IrRu DSACs) to tune the H2O adsorption configuration and orientation, thus optimizing its dissociation process. The electric field intensity of IrRu DSACs is over 4.00×1010 N/C. The ab initio molecular dynamics simulations combined with in situ Raman spectroscopy analysis on the adsorption behavior of H2O show that the M−H bond length (M=active site) is shortened at the interface due to the strong local electric field gradient and the optimized water orientation promotes the dissociation process of interfacial water. This work provides a new way to explore the role of single atomic sites in alkaline hydrogen evolution reaction. Breaking the periodic surface of catalysts by the inclusion of single atoms can help building atomic electric fields that highly promote the hydrogen evolution reaction activity. We show here that this is achieved by modulating the interfacial water orientation and by subsequently decreasing the active sites‐hydrogen distance.</description><subject>Adsorption</subject><subject>Alkaline HER</subject><subject>Atomic Charge Distribution</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Hydrogen evolution reactions</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Interfacial Water Orientation</subject><subject>Kinetics</subject><subject>Molecular dynamics</subject><subject>Orientation</subject><subject>Raman spectroscopy</subject><subject>Single-Atom Site</subject><subject>Water</subject><subject>Water Dissociation</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1rVDEUxYMo9sutSwm6cfOm-XqTZDmUqR0YLBSly5BJ7tPUTFKT9yrz35vp1ApuXJ0D93cP3HsQekvJjBLCzm0KMGOEcUKU5C_QMe0Z7biU_GXzgvNOqp4eoZNa7xqvFJm_Rkd8rhSXWh-jtBjzNjgb4w6vc1O8jODGEhy-DBA9XiU_OdjrCGWwDvCtbQ7fQC4B0mjHkBMecsGL-MPGkABf7XzJ3yDh5UOO0-P8BqzbmzP0arCxwpsnPUVfL5dfLq669fWn1cVi3TkhCO-0d35gG0KcJ1Q5r6UD0jNJxKAHJejGEs8s1ZQ00Ot-zj2TfLDU95Yp4PwUvT_k5joGU10YwX13OaV2m2GCCK1Vgz4eoPuSf05QR7MN1UGMNkGeqmFSifYmokRDP_yD3uWppHaCYYrNe96LXjdqdqBcybUWGMx9CVtbdoYSs6_L7Osyz3W1hXdPsdNmC_4Z_9NPA_QB-BUi7P4TZxafV8u_4b8B8YGhdg</recordid><startdate>20230626</startdate><enddate>20230626</enddate><creator>Cai, Chao</creator><creator>Liu, Kang</creator><creator>Zhang, Long</creator><creator>Li, Fangbiao</creator><creator>Tan, Yao</creator><creator>Li, Pengcheng</creator><creator>Wang, Yanqiu</creator><creator>Wang, Maoyu</creator><creator>Feng, Zhenxing</creator><creator>Motta Meira, Debora</creator><creator>Qu, Wenqiang</creator><creator>Stefancu, Andrei</creator><creator>Li, Wenzhang</creator><creator>Li, Hongmei</creator><creator>Fu, Junwei</creator><creator>Wang, Hui</creator><creator>Zhang, Dengsong</creator><creator>Cortés, Emiliano</creator><creator>Liu, Min</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8248-4165</orcidid><orcidid>https://orcid.org/0000-0003-4280-0068</orcidid><orcidid>https://orcid.org/0000-0002-3367-1922</orcidid><orcidid>https://orcid.org/0000000233671922</orcidid><orcidid>https://orcid.org/0000000182484165</orcidid><orcidid>https://orcid.org/0000000342800068</orcidid></search><sort><creationdate>20230626</creationdate><title>Atomically Local Electric Field Induced Interface Water Reorientation for Alkaline Hydrogen Evolution Reaction</title><author>Cai, Chao ; Liu, Kang ; Zhang, Long ; Li, Fangbiao ; Tan, Yao ; Li, Pengcheng ; Wang, Yanqiu ; Wang, Maoyu ; Feng, Zhenxing ; Motta Meira, Debora ; Qu, Wenqiang ; Stefancu, Andrei ; Li, Wenzhang ; Li, Hongmei ; Fu, Junwei ; Wang, Hui ; Zhang, Dengsong ; Cortés, Emiliano ; Liu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4403-9dcdf2b00cd018cd97ce052704f9f841ba0d2a1910dcdd9563d273fa1d5a28e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Alkaline HER</topic><topic>Atomic Charge Distribution</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Hydrogen evolution reactions</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Interfacial Water Orientation</topic><topic>Kinetics</topic><topic>Molecular dynamics</topic><topic>Orientation</topic><topic>Raman spectroscopy</topic><topic>Single-Atom Site</topic><topic>Water</topic><topic>Water Dissociation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Chao</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Li, Fangbiao</creatorcontrib><creatorcontrib>Tan, Yao</creatorcontrib><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Wang, Yanqiu</creatorcontrib><creatorcontrib>Wang, Maoyu</creatorcontrib><creatorcontrib>Feng, Zhenxing</creatorcontrib><creatorcontrib>Motta Meira, Debora</creatorcontrib><creatorcontrib>Qu, Wenqiang</creatorcontrib><creatorcontrib>Stefancu, Andrei</creatorcontrib><creatorcontrib>Li, Wenzhang</creatorcontrib><creatorcontrib>Li, Hongmei</creatorcontrib><creatorcontrib>Fu, Junwei</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Dengsong</creatorcontrib><creatorcontrib>Cortés, Emiliano</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Chao</au><au>Liu, Kang</au><au>Zhang, Long</au><au>Li, Fangbiao</au><au>Tan, Yao</au><au>Li, Pengcheng</au><au>Wang, Yanqiu</au><au>Wang, Maoyu</au><au>Feng, Zhenxing</au><au>Motta Meira, Debora</au><au>Qu, Wenqiang</au><au>Stefancu, Andrei</au><au>Li, Wenzhang</au><au>Li, Hongmei</au><au>Fu, Junwei</au><au>Wang, Hui</au><au>Zhang, Dengsong</au><au>Cortés, Emiliano</au><au>Liu, Min</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically Local Electric Field Induced Interface Water Reorientation for Alkaline Hydrogen Evolution Reaction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-06-26</date><risdate>2023</risdate><volume>62</volume><issue>26</issue><spage>e202300873</spage><epage>n/a</epage><pages>e202300873-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The slow water dissociation process in alkaline electrolyte severely limits the kinetics of HER. The orientation of H2O is well known to affect the dissociation process, but H2O orientation is hard to control because of its random distribution. Herein, an atomically asymmetric local electric field was designed by IrRu dizygotic single‐atom sites (IrRu DSACs) to tune the H2O adsorption configuration and orientation, thus optimizing its dissociation process. The electric field intensity of IrRu DSACs is over 4.00×1010 N/C. The ab initio molecular dynamics simulations combined with in situ Raman spectroscopy analysis on the adsorption behavior of H2O show that the M−H bond length (M=active site) is shortened at the interface due to the strong local electric field gradient and the optimized water orientation promotes the dissociation process of interfacial water. This work provides a new way to explore the role of single atomic sites in alkaline hydrogen evolution reaction. Breaking the periodic surface of catalysts by the inclusion of single atoms can help building atomic electric fields that highly promote the hydrogen evolution reaction activity. We show here that this is achieved by modulating the interfacial water orientation and by subsequently decreasing the active sites‐hydrogen distance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36883799</pmid><doi>10.1002/anie.202300873</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-8248-4165</orcidid><orcidid>https://orcid.org/0000-0003-4280-0068</orcidid><orcidid>https://orcid.org/0000-0002-3367-1922</orcidid><orcidid>https://orcid.org/0000000233671922</orcidid><orcidid>https://orcid.org/0000000182484165</orcidid><orcidid>https://orcid.org/0000000342800068</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-06, Vol.62 (26), p.e202300873-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_2404998
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
Alkaline HER
Atomic Charge Distribution
Electric fields
Electricity
Hydrogen
Hydrogen bonds
Hydrogen evolution reactions
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Interfacial Water Orientation
Kinetics
Molecular dynamics
Orientation
Raman spectroscopy
Single-Atom Site
Water
Water Dissociation
title Atomically Local Electric Field Induced Interface Water Reorientation for Alkaline Hydrogen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20Local%20Electric%20Field%20Induced%20Interface%20Water%20Reorientation%20for%20Alkaline%20Hydrogen%20Evolution%20Reaction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Cai,%20Chao&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-06-26&rft.volume=62&rft.issue=26&rft.spage=e202300873&rft.epage=n/a&rft.pages=e202300873-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202300873&rft_dat=%3Cproquest_osti_%3E2784837084%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826535459&rft_id=info:pmid/36883799&rfr_iscdi=true