Ultrafast jet classification at the HL-LHC

Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the input size and choice of algorithm. Moreover, the mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2024-07, Vol.5 (3)
Hauptverfasser: Odagiu, Patrick, Que, Zhiqiang, Duarte, Javier, Haller, Johannes, Kasieczka, Gregor, Lobanov, Artur, Loncar, Vladimir, Luk, Wayne, Ngadiuba, Jennifer, Pierini, Maurizio, Rincke, Philipp, Seksaria, Arpita, Summers, Sioni, Sznajder, Andre, Tapper, Alexander, Årrestad, Thea K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Machine learning: science and technology
container_volume 5
creator Odagiu, Patrick
Que, Zhiqiang
Duarte, Javier
Haller, Johannes
Kasieczka, Gregor
Lobanov, Artur
Loncar, Vladimir
Luk, Wayne
Ngadiuba, Jennifer
Pierini, Maurizio
Rincke, Philipp
Seksaria, Arpita
Summers, Sioni
Sznajder, Andre
Tapper, Alexander
Årrestad, Thea K.
description Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the input size and choice of algorithm. Moreover, the models proposed here are designed to work on the type of data and under the foreseen conditions at the CERN large hadron collider during its high-luminosity phase. Through quantization-aware training and efficient synthetization for a specific field programmable gate array, we show that $\mathcal{O}(100)$ ns inference of complex architectures such as Deep Sets and Interaction Networks is feasible at a relatively low computational resource cost.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2404436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404436</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24044363</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgChbbdwiOQiDNT1-gKBk66lwul4SmhAS89_1xcXB0Ot9wDqIzkzXKjN4ef3wWA9GutTZ-tN7oTtxehd-QgFjukSUWIMopI3BuVQJL3qIMi1rC3ItTgkJx-PYiro_7cw6qEeeVMHPEDVutEXk1TjtnJ_vX9AGlKDHJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast jet classification at the HL-LHC</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><creator>Odagiu, Patrick ; Que, Zhiqiang ; Duarte, Javier ; Haller, Johannes ; Kasieczka, Gregor ; Lobanov, Artur ; Loncar, Vladimir ; Luk, Wayne ; Ngadiuba, Jennifer ; Pierini, Maurizio ; Rincke, Philipp ; Seksaria, Arpita ; Summers, Sioni ; Sznajder, Andre ; Tapper, Alexander ; Årrestad, Thea K.</creator><creatorcontrib>Odagiu, Patrick ; Que, Zhiqiang ; Duarte, Javier ; Haller, Johannes ; Kasieczka, Gregor ; Lobanov, Artur ; Loncar, Vladimir ; Luk, Wayne ; Ngadiuba, Jennifer ; Pierini, Maurizio ; Rincke, Philipp ; Seksaria, Arpita ; Summers, Sioni ; Sznajder, Andre ; Tapper, Alexander ; Årrestad, Thea K. ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><description>Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the input size and choice of algorithm. Moreover, the models proposed here are designed to work on the type of data and under the foreseen conditions at the CERN large hadron collider during its high-luminosity phase. Through quantization-aware training and efficient synthetization for a specific field programmable gate array, we show that $\mathcal{O}(100)$ ns inference of complex architectures such as Deep Sets and Interaction Networks is feasible at a relatively low computational resource cost.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Machine learning: science and technology, 2024-07, Vol.5 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009000503420128 ; 0000000200552935 ; 0000000319394268 ; 0000000169981108 ; 000000027671243X ; 0009000039402355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2404436$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Odagiu, Patrick</creatorcontrib><creatorcontrib>Que, Zhiqiang</creatorcontrib><creatorcontrib>Duarte, Javier</creatorcontrib><creatorcontrib>Haller, Johannes</creatorcontrib><creatorcontrib>Kasieczka, Gregor</creatorcontrib><creatorcontrib>Lobanov, Artur</creatorcontrib><creatorcontrib>Loncar, Vladimir</creatorcontrib><creatorcontrib>Luk, Wayne</creatorcontrib><creatorcontrib>Ngadiuba, Jennifer</creatorcontrib><creatorcontrib>Pierini, Maurizio</creatorcontrib><creatorcontrib>Rincke, Philipp</creatorcontrib><creatorcontrib>Seksaria, Arpita</creatorcontrib><creatorcontrib>Summers, Sioni</creatorcontrib><creatorcontrib>Sznajder, Andre</creatorcontrib><creatorcontrib>Tapper, Alexander</creatorcontrib><creatorcontrib>Årrestad, Thea K.</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><title>Ultrafast jet classification at the HL-LHC</title><title>Machine learning: science and technology</title><description>Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the input size and choice of algorithm. Moreover, the models proposed here are designed to work on the type of data and under the foreseen conditions at the CERN large hadron collider during its high-luminosity phase. Through quantization-aware training and efficient synthetization for a specific field programmable gate array, we show that $\mathcal{O}(100)$ ns inference of complex architectures such as Deep Sets and Interaction Networks is feasible at a relatively low computational resource cost.</description><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNyr0KwjAUQOEgChbbdwiOQiDNT1-gKBk66lwul4SmhAS89_1xcXB0Ot9wDqIzkzXKjN4ef3wWA9GutTZ-tN7oTtxehd-QgFjukSUWIMopI3BuVQJL3qIMi1rC3ItTgkJx-PYiro_7cw6qEeeVMHPEDVutEXk1TjtnJ_vX9AGlKDHJ</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Odagiu, Patrick</creator><creator>Que, Zhiqiang</creator><creator>Duarte, Javier</creator><creator>Haller, Johannes</creator><creator>Kasieczka, Gregor</creator><creator>Lobanov, Artur</creator><creator>Loncar, Vladimir</creator><creator>Luk, Wayne</creator><creator>Ngadiuba, Jennifer</creator><creator>Pierini, Maurizio</creator><creator>Rincke, Philipp</creator><creator>Seksaria, Arpita</creator><creator>Summers, Sioni</creator><creator>Sznajder, Andre</creator><creator>Tapper, Alexander</creator><creator>Årrestad, Thea K.</creator><general>IOP Publishing</general><scope>OTOTI</scope><orcidid>https://orcid.org/0009000503420128</orcidid><orcidid>https://orcid.org/0000000200552935</orcidid><orcidid>https://orcid.org/0000000319394268</orcidid><orcidid>https://orcid.org/0000000169981108</orcidid><orcidid>https://orcid.org/000000027671243X</orcidid><orcidid>https://orcid.org/0009000039402355</orcidid></search><sort><creationdate>20240718</creationdate><title>Ultrafast jet classification at the HL-LHC</title><author>Odagiu, Patrick ; Que, Zhiqiang ; Duarte, Javier ; Haller, Johannes ; Kasieczka, Gregor ; Lobanov, Artur ; Loncar, Vladimir ; Luk, Wayne ; Ngadiuba, Jennifer ; Pierini, Maurizio ; Rincke, Philipp ; Seksaria, Arpita ; Summers, Sioni ; Sznajder, Andre ; Tapper, Alexander ; Årrestad, Thea K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24044363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odagiu, Patrick</creatorcontrib><creatorcontrib>Que, Zhiqiang</creatorcontrib><creatorcontrib>Duarte, Javier</creatorcontrib><creatorcontrib>Haller, Johannes</creatorcontrib><creatorcontrib>Kasieczka, Gregor</creatorcontrib><creatorcontrib>Lobanov, Artur</creatorcontrib><creatorcontrib>Loncar, Vladimir</creatorcontrib><creatorcontrib>Luk, Wayne</creatorcontrib><creatorcontrib>Ngadiuba, Jennifer</creatorcontrib><creatorcontrib>Pierini, Maurizio</creatorcontrib><creatorcontrib>Rincke, Philipp</creatorcontrib><creatorcontrib>Seksaria, Arpita</creatorcontrib><creatorcontrib>Summers, Sioni</creatorcontrib><creatorcontrib>Sznajder, Andre</creatorcontrib><creatorcontrib>Tapper, Alexander</creatorcontrib><creatorcontrib>Årrestad, Thea K.</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odagiu, Patrick</au><au>Que, Zhiqiang</au><au>Duarte, Javier</au><au>Haller, Johannes</au><au>Kasieczka, Gregor</au><au>Lobanov, Artur</au><au>Loncar, Vladimir</au><au>Luk, Wayne</au><au>Ngadiuba, Jennifer</au><au>Pierini, Maurizio</au><au>Rincke, Philipp</au><au>Seksaria, Arpita</au><au>Summers, Sioni</au><au>Sznajder, Andre</au><au>Tapper, Alexander</au><au>Årrestad, Thea K.</au><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast jet classification at the HL-LHC</atitle><jtitle>Machine learning: science and technology</jtitle><date>2024-07-18</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><issn>2632-2153</issn><eissn>2632-2153</eissn><abstract>Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the input size and choice of algorithm. Moreover, the models proposed here are designed to work on the type of data and under the foreseen conditions at the CERN large hadron collider during its high-luminosity phase. Through quantization-aware training and efficient synthetization for a specific field programmable gate array, we show that $\mathcal{O}(100)$ ns inference of complex architectures such as Deep Sets and Interaction Networks is feasible at a relatively low computational resource cost.</abstract><cop>United States</cop><pub>IOP Publishing</pub><orcidid>https://orcid.org/0009000503420128</orcidid><orcidid>https://orcid.org/0000000200552935</orcidid><orcidid>https://orcid.org/0000000319394268</orcidid><orcidid>https://orcid.org/0000000169981108</orcidid><orcidid>https://orcid.org/000000027671243X</orcidid><orcidid>https://orcid.org/0009000039402355</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2024-07, Vol.5 (3)
issn 2632-2153
2632-2153
language eng
recordid cdi_osti_scitechconnect_2404436
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles
subjects INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
title Ultrafast jet classification at the HL-LHC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20jet%20classification%20at%20the%20HL-LHC&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Odagiu,%20Patrick&rft.aucorp=Fermi%20National%20Accelerator%20Laboratory%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2024-07-18&rft.volume=5&rft.issue=3&rft.issn=2632-2153&rft.eissn=2632-2153&rft_id=info:doi/&rft_dat=%3Costi%3E2404436%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true