Ultrafast jet classification at the HL-LHC
Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the input size and choice of algorithm. Moreover, the mode...
Gespeichert in:
Veröffentlicht in: | Machine learning: science and technology 2024-07, Vol.5 (3) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Machine learning: science and technology |
container_volume | 5 |
creator | Odagiu, Patrick Que, Zhiqiang Duarte, Javier Haller, Johannes Kasieczka, Gregor Lobanov, Artur Loncar, Vladimir Luk, Wayne Ngadiuba, Jennifer Pierini, Maurizio Rincke, Philipp Seksaria, Arpita Summers, Sioni Sznajder, Andre Tapper, Alexander Årrestad, Thea K. |
description | Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the input size and choice of algorithm. Moreover, the models proposed here are designed to work on the type of data and under the foreseen conditions at the CERN large hadron collider during its high-luminosity phase. Through quantization-aware training and efficient synthetization for a specific field programmable gate array, we show that $\mathcal{O}(100)$ ns inference of complex architectures such as Deep Sets and Interaction Networks is feasible at a relatively low computational resource cost. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2404436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404436</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24044363</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgChbbdwiOQiDNT1-gKBk66lwul4SmhAS89_1xcXB0Ot9wDqIzkzXKjN4ef3wWA9GutTZ-tN7oTtxehd-QgFjukSUWIMopI3BuVQJL3qIMi1rC3ItTgkJx-PYiro_7cw6qEeeVMHPEDVutEXk1TjtnJ_vX9AGlKDHJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast jet classification at the HL-LHC</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><creator>Odagiu, Patrick ; Que, Zhiqiang ; Duarte, Javier ; Haller, Johannes ; Kasieczka, Gregor ; Lobanov, Artur ; Loncar, Vladimir ; Luk, Wayne ; Ngadiuba, Jennifer ; Pierini, Maurizio ; Rincke, Philipp ; Seksaria, Arpita ; Summers, Sioni ; Sznajder, Andre ; Tapper, Alexander ; Årrestad, Thea K.</creator><creatorcontrib>Odagiu, Patrick ; Que, Zhiqiang ; Duarte, Javier ; Haller, Johannes ; Kasieczka, Gregor ; Lobanov, Artur ; Loncar, Vladimir ; Luk, Wayne ; Ngadiuba, Jennifer ; Pierini, Maurizio ; Rincke, Philipp ; Seksaria, Arpita ; Summers, Sioni ; Sznajder, Andre ; Tapper, Alexander ; Årrestad, Thea K. ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><description>Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the input size and choice of algorithm. Moreover, the models proposed here are designed to work on the type of data and under the foreseen conditions at the CERN large hadron collider during its high-luminosity phase. Through quantization-aware training and efficient synthetization for a specific field programmable gate array, we show that $\mathcal{O}(100)$ ns inference of complex architectures such as Deep Sets and Interaction Networks is feasible at a relatively low computational resource cost.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Machine learning: science and technology, 2024-07, Vol.5 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009000503420128 ; 0000000200552935 ; 0000000319394268 ; 0000000169981108 ; 000000027671243X ; 0009000039402355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2404436$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Odagiu, Patrick</creatorcontrib><creatorcontrib>Que, Zhiqiang</creatorcontrib><creatorcontrib>Duarte, Javier</creatorcontrib><creatorcontrib>Haller, Johannes</creatorcontrib><creatorcontrib>Kasieczka, Gregor</creatorcontrib><creatorcontrib>Lobanov, Artur</creatorcontrib><creatorcontrib>Loncar, Vladimir</creatorcontrib><creatorcontrib>Luk, Wayne</creatorcontrib><creatorcontrib>Ngadiuba, Jennifer</creatorcontrib><creatorcontrib>Pierini, Maurizio</creatorcontrib><creatorcontrib>Rincke, Philipp</creatorcontrib><creatorcontrib>Seksaria, Arpita</creatorcontrib><creatorcontrib>Summers, Sioni</creatorcontrib><creatorcontrib>Sznajder, Andre</creatorcontrib><creatorcontrib>Tapper, Alexander</creatorcontrib><creatorcontrib>Årrestad, Thea K.</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><title>Ultrafast jet classification at the HL-LHC</title><title>Machine learning: science and technology</title><description>Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the input size and choice of algorithm. Moreover, the models proposed here are designed to work on the type of data and under the foreseen conditions at the CERN large hadron collider during its high-luminosity phase. Through quantization-aware training and efficient synthetization for a specific field programmable gate array, we show that $\mathcal{O}(100)$ ns inference of complex architectures such as Deep Sets and Interaction Networks is feasible at a relatively low computational resource cost.</description><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNyr0KwjAUQOEgChbbdwiOQiDNT1-gKBk66lwul4SmhAS89_1xcXB0Ot9wDqIzkzXKjN4ef3wWA9GutTZ-tN7oTtxehd-QgFjukSUWIMopI3BuVQJL3qIMi1rC3ItTgkJx-PYiro_7cw6qEeeVMHPEDVutEXk1TjtnJ_vX9AGlKDHJ</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Odagiu, Patrick</creator><creator>Que, Zhiqiang</creator><creator>Duarte, Javier</creator><creator>Haller, Johannes</creator><creator>Kasieczka, Gregor</creator><creator>Lobanov, Artur</creator><creator>Loncar, Vladimir</creator><creator>Luk, Wayne</creator><creator>Ngadiuba, Jennifer</creator><creator>Pierini, Maurizio</creator><creator>Rincke, Philipp</creator><creator>Seksaria, Arpita</creator><creator>Summers, Sioni</creator><creator>Sznajder, Andre</creator><creator>Tapper, Alexander</creator><creator>Årrestad, Thea K.</creator><general>IOP Publishing</general><scope>OTOTI</scope><orcidid>https://orcid.org/0009000503420128</orcidid><orcidid>https://orcid.org/0000000200552935</orcidid><orcidid>https://orcid.org/0000000319394268</orcidid><orcidid>https://orcid.org/0000000169981108</orcidid><orcidid>https://orcid.org/000000027671243X</orcidid><orcidid>https://orcid.org/0009000039402355</orcidid></search><sort><creationdate>20240718</creationdate><title>Ultrafast jet classification at the HL-LHC</title><author>Odagiu, Patrick ; Que, Zhiqiang ; Duarte, Javier ; Haller, Johannes ; Kasieczka, Gregor ; Lobanov, Artur ; Loncar, Vladimir ; Luk, Wayne ; Ngadiuba, Jennifer ; Pierini, Maurizio ; Rincke, Philipp ; Seksaria, Arpita ; Summers, Sioni ; Sznajder, Andre ; Tapper, Alexander ; Årrestad, Thea K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24044363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odagiu, Patrick</creatorcontrib><creatorcontrib>Que, Zhiqiang</creatorcontrib><creatorcontrib>Duarte, Javier</creatorcontrib><creatorcontrib>Haller, Johannes</creatorcontrib><creatorcontrib>Kasieczka, Gregor</creatorcontrib><creatorcontrib>Lobanov, Artur</creatorcontrib><creatorcontrib>Loncar, Vladimir</creatorcontrib><creatorcontrib>Luk, Wayne</creatorcontrib><creatorcontrib>Ngadiuba, Jennifer</creatorcontrib><creatorcontrib>Pierini, Maurizio</creatorcontrib><creatorcontrib>Rincke, Philipp</creatorcontrib><creatorcontrib>Seksaria, Arpita</creatorcontrib><creatorcontrib>Summers, Sioni</creatorcontrib><creatorcontrib>Sznajder, Andre</creatorcontrib><creatorcontrib>Tapper, Alexander</creatorcontrib><creatorcontrib>Årrestad, Thea K.</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odagiu, Patrick</au><au>Que, Zhiqiang</au><au>Duarte, Javier</au><au>Haller, Johannes</au><au>Kasieczka, Gregor</au><au>Lobanov, Artur</au><au>Loncar, Vladimir</au><au>Luk, Wayne</au><au>Ngadiuba, Jennifer</au><au>Pierini, Maurizio</au><au>Rincke, Philipp</au><au>Seksaria, Arpita</au><au>Summers, Sioni</au><au>Sznajder, Andre</au><au>Tapper, Alexander</au><au>Årrestad, Thea K.</au><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast jet classification at the HL-LHC</atitle><jtitle>Machine learning: science and technology</jtitle><date>2024-07-18</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><issn>2632-2153</issn><eissn>2632-2153</eissn><abstract>Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the input size and choice of algorithm. Moreover, the models proposed here are designed to work on the type of data and under the foreseen conditions at the CERN large hadron collider during its high-luminosity phase. Through quantization-aware training and efficient synthetization for a specific field programmable gate array, we show that $\mathcal{O}(100)$ ns inference of complex architectures such as Deep Sets and Interaction Networks is feasible at a relatively low computational resource cost.</abstract><cop>United States</cop><pub>IOP Publishing</pub><orcidid>https://orcid.org/0009000503420128</orcidid><orcidid>https://orcid.org/0000000200552935</orcidid><orcidid>https://orcid.org/0000000319394268</orcidid><orcidid>https://orcid.org/0000000169981108</orcidid><orcidid>https://orcid.org/000000027671243X</orcidid><orcidid>https://orcid.org/0009000039402355</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-2153 |
ispartof | Machine learning: science and technology, 2024-07, Vol.5 (3) |
issn | 2632-2153 2632-2153 |
language | eng |
recordid | cdi_osti_scitechconnect_2404436 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles |
subjects | INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
title | Ultrafast jet classification at the HL-LHC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20jet%20classification%20at%20the%20HL-LHC&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Odagiu,%20Patrick&rft.aucorp=Fermi%20National%20Accelerator%20Laboratory%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2024-07-18&rft.volume=5&rft.issue=3&rft.issn=2632-2153&rft.eissn=2632-2153&rft_id=info:doi/&rft_dat=%3Costi%3E2404436%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |